Посты с тэгом алгоритмы


Метод BFGS или один из самых эффективных методов оптимизации. Пример реализации на Python



Метод BFGS, итерационный метод численной оптимизации, назван в честь его исследователей: Broyden, Fletcher, Goldfarb, Shanno. Относится к классу так называемых квазиньютоновских методов. В отличие от ньютоновских методов в квазиньютоновских не вычисляется напрямую гессиан функции, т.е. нет необходимости находить частные производные второго порядка. Вместо этого гессиан вычисляется приближенно, исходя из сделанных до этого шагов.

Существует несколько модификаций метода:
L-BFGS (ограниченное использование памяти) — используется в случае большого количества неизвестных.
L-BFGS-B — модификация с ограниченным использованием памяти в многомерном кубе.

Метод эффективен и устойчив, поэтому зачастую применяется в функциях оптимизации. Например в SciPy, популярн


Метод оптимизации Нелдера — Мида. Пример реализации на Python



Метод Нелдера — Мида — метод оптимизации (поиска минимума) функции от нескольких переменных. Простой и в тоже время эффективный метод, позволяющий оптимизировать функции без использования градиентов. Метод надежен и, как правило, показывает замечательные результаты, хотя и отсутствует теория сходимости. Используется по умолчанию в функции optimize из модуля scipy.optimize популярной библиотеки для языка python, которая используется для математических расчетов.
Читать дальше →


Генерируем произвольные последовательности на выводах платы Raspberry Pi



Автор: Николай Хабаров, Embedded Expert DataArt, евангелист технологий умного дома.

В этой статье я расскажу, как написать обычное user space-приложение на Python для современного ARM-процессора с ОС Linux для генерирования сложных последовательностей импульсов на выводах платы. Суть идеи — использовать DMA-модуль процессора для копирования из предварительно подготовленного буфера в памяти в GPIO с высокой точностью по времени.

Когда речь заходит о необходимости сгенерировать сложную последовательность импульсов, например, для шаговых двигателей, обычно используют старые добрые простенькие микроконтроллеры с установленной специальной операционной системой реального времени или вообще без операционной системы. Реализация при этом, в лучшем случае, написана на C++. Сейчас процессоры шагнули далеко вперед и имеют массу преимуществ: производительность, возможнос


Генерируем произвольные последовательности на выводах платы Raspberry Pi



Автор: Николай Хабаров, Embedded Expert DataArt, евангелист технологий умного дома.

В этой статье я расскажу, как написать обычное user space-приложение на Python для современного ARM-процессора с ОС Linux для генерирования сложных последовательностей импульсов на выводах платы. Суть идеи — использовать DMA-модуль процессора для копирования из предварительно подготовленного буфера в памяти в GPIO с высокой точностью по времени.

Когда речь заходит о необходимости сгенерировать сложную последовательность импульсов, например, для шаговых двигателей, обычно используют старые добрые простенькие микроконтроллеры с установленной специальной операционной системой реального времени или вообще без операционной системы. Реализация при этом, в лучшем случае, написана на C++. Сейчас процессоры шагнули далеко вперед и имеют массу преимуществ: производительность, возможнос


Открытый курс машинного обучения. Тема 9. Анализ временных рядов с помощью Python

Доброго дня!


Мы продолжаем наш цикл статей открытого курса по машинному обучению и сегодня поговорим о временных рядах.



Посмотрим на то, как с ними работать в Python, какие возможные методы и модели можно использовать для прогнозирования; что такое двойное и тройное экспоненциальное взвешивание; что делать, если стационарность — это не про вас; как построить SARIMA и не умереть; и как прогнозировать xgboost-ом. И всё это будем применять к примеру из суровой реальности.

Читать дальше →


Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Привет всем, кто дожил до пятой темы нашего курса!


Курс собрал уже более 1000 участников, из них первые 3 домашних задания сделали 520, 450 и 360 человек соответственно. Около 200 участников пока идут с максимальным баллом. Отток намного ниже, чем в MOOC-ах, даже несмотря на большой объем наших статей.


Данное занятие мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию, и таким образом улучшим точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


Список статей серии


Базовые принципы машинного обучения на примере линейной регрессии

Здравствуйте, коллеги! Это блог открытой русскоговорящей дата саентологической ложи. Нас уже легион, точнее 2500+ человек в слаке. За полтора года мы нагенерили 800к+ сообщений (ради этого слак выделил нам корпоративный аккаунт). Наши люди есть везде и, может, даже в вашей организации. Если вы интересуетесь машинным обучением, но по каким-то причинам не знаете про Open Data Science, то возможно вы в курсе мероприятий, которые организовывает сообщество. Самым масштабным из них является DataFest, который проходил недавно в офисе Mail.Ru Group, за два дня его посетило 1700 человек. Мы растем, наши ложи открываются в городах России, а также в Нью-Йорке, Дубае и даже во Львове, да, мы не воюем, а иногда даже и употребляем горячительные напитки вмест


Есть две функции



Есть две булевы функции аргументов, одна — константная, другая — сбалансированная. На какую сам сядешь, на какую фронтендера посадишь? Вот только функции неизвестны, а вызвать их разрешается лишь один раз.

Если не знаешь, как решить подобную задачу, добро пожаловать под кат. Там я расскажу про квантовые алгоритмы и покажу как их эмулировать на самом народном языке — на Python.
Hello darkness, my old friend


[Перевод] Нейросеть на Python, часть 2: градиентный спуск


Часть 1

Давай сразу код!


import numpy as np
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
alpha,hidden_dim = (0.5,4)
synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
for j in xrange(60000):
    layer_1 = 1/(1+np.exp(-(np.dot(X,synapse_0))))
    layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
    layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
    layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
    synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
    synapse_0 -= (alpha * X.T.dot(layer_1_delta))

Часть 1: Оптимизация


В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другог


[Перевод] Нейросеть в 11 строчек на Python: часть 1


О чём статья


Лично я лучше всего обучаюсь при помощи небольшого работающего кода, с которым могу поиграться. В этом пособии мы научимся алгоритму обратного распространения ошибок на примере небольшой нейронной сети, реализованной на Python.

Дайте код!


X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
    l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
    l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
    l2_delta = (y - l2)*(l2*(1-l2))
    l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
    syn1 += l1.T.dot(l2_delta)
    syn0 += X.T.dot(l1_delta)


Слишком сжато? Давайте разобьём его на более простые части.
Читать дальше →