Посты с тэгом нейронные сети


[Перевод] Механизм подсчета нейронной сети в PL/SQL для распознавания рукописных цифр

Дорогие коллеги, спешим порадовать всех, кто неравнодушен к наукоемким задачам. Сегодня мы приготовили для вас перевод любопытной публикации от экспертов по базам данных из CERN, посвященный обучению и эксплуатации нейронных сетей с помощью Python и инструментария на базе Oracle PL/SQL.



В этой статье вы найдете пример построения и развертывания базового механизма подсчета искусственной нейронной сети с использованием PL/SQL. Статья предназначена для учебных целей, в частности для практиков Oracle, которые хотят на конкретном примере познакомиться с нейронными сетями.
Читать дальше →


[Перевод] Нейросеть на Python, часть 2: градиентный спуск


Часть 1

Давай сразу код!


import numpy as np
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
alpha,hidden_dim = (0.5,4)
synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
for j in xrange(60000):
    layer_1 = 1/(1+np.exp(-(np.dot(X,synapse_0))))
    layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
    layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
    layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
    synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
    synapse_0 -= (alpha * X.T.dot(layer_1_delta))

Часть 1: Оптимизация


В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другог


Пример векторной реализации нейронной сети с помощью Python


В статье речь пойдет о построение нейронных сетей (с регуляризацией) с вычислениями преимущественно векторным способом на Python. Статья приближена к материалам курса Machine learning by Andrew Ng для более быстрого восприятия, но если вы курс не проходили ничего страшного, ничего специфичного не предвидится. Если вы всегда хотели построить свою нейронную сеть с преферансом и барышням векторами и регуляризацией, но что то вас удерживало, то сейчас самое время.

Данная статья нацелена на практическую реализацию нейронных сетей, и предполагается что читатель знаком с теорией (поэтому она будет опущена).
Читать дальше →


[Из песочницы] Работа с метасетевыми структурами на Python – библиотека MetaNet


Когда видите единственное решение – спросите других



В данной статье я хотел бы рассказать о некоторых предпосылках появления инструмента для моделирования метасетей.

Автоматизация обучения


Изначально возникла проблема автоматизации обучения искусственных нейронных сетей с определёнными временными ограничениями. На пути ее решения был предложен подход к использованию оппозитных нейронных сетей [1]. Суть в том, что бы обучать две сети, одну как обычно:
Читать дальше →


[Из песочницы] Необыкновенный способ генерации лабиринтов

В этой статье я расскажу об одном необычном подходе к генерации лабиринтов. Он основан на модели Амари́ нейронной активности коры головного мозга, являющейся непрерывным аналогом нейронных сетей. При определенных условиях она позволяет создавать красивые лабиринты очень сложной формы, подобные тому, что приведен на картинке.

Вас ждет много анализа и немного частных производных. Код прилагается.
Прошу под кат!

Читать дальше →


PyBrain работаем с нейронными сетями на Python


В рамках одного проекта столкнулся необходимостью работать с нейронными сетями, рассмотрел несколько вариантов, больше всего понравилась PyBrain. Надеюсь её описание будет многим интересно почитать.

PyBrain — одна из лучших Python библиотек для изучения и реализации большого количества разнообразных алгоритмов связанных с нейронными сетями. Являет собой удачный пример совмещения компактного синтаксиса Python с хорошей реализацией большого набора различных алгоритмов из области машинного интеллекта.
Предназначен для:
  • Исследователей — предоставляет единообразную среду для реализации различных алгоритмов, избавляя от потребности в использовании десятков различных библиотек. Позволяет сосредоточится на самом алгоритме а не особенностях его реализации.
  • Студентов — с использованием PyBrain удобно реал


Нейронные сети: улучшаем bpnn.py

В своей предыдущей статье я дал краткое описание нейронных сетей и привел вариант реализации нейронной сети на python посредством библиотеки bpnn.py. Сегодня мы продолжим работу с этой библиотекой. Чем мне нравится библиотека bpnn.py, так это ее наглядность (как впрочем и большинство python-кода) и небольшой размер. Но как раз из-за компактности имеется у этого модуля и [...]



Нейронные сети: вступление

Итак, после длительного перерыва продолжим исследование методов прогнозирования. Наиболее перспективным, на мой взгляд, является прогнозирование с использованием нейронных сетей. Искусственная нейронная сеть представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только [...]