Публикации о языке Python   страница 10

Как принимать платежи в Telegram | API Yoomoney Python

Как принимать платежи используя YooMoney API и Python

Читать далее



В поисках упорядоченного множества в Python: разбираемся с теорией и выбираем лучшую реализацию


Множество (Set) — структура данных, которая позволяет достаточно быстро (в зависимости от реализации) применить операции add, erase и is_in_set. Но иногда этого не достаточно: например, невозможно перебрать все элементы в порядке возрастания, получить следующий / предыдущий по величине или быстро узнать, сколько элементов меньше данного есть в множестве. В таких случаях приходится использовать Упорядоченное множество (ordered_set). О том, как оно работает, и какие реализации есть для питона — далее.

Читать дальше →



И еще несколько полезных библиотек для Python (с примерами)

У python одно из самых крупных комьюнити, это обусловлено тем, что этот язык любят многие за его простоту и универсальность. Очень много энтузиастов, которые создают всё новые и новые библиотеки для облегчения разработки, поэтому среди всего этого разнообразия каждый может подобрать несколько библиотек для себя. На github существует много проектов, которые каждый может встроить к себе в проект, чтобы оптимизировать, улучшить или просто расширить его функционал.

Хотелось бы рассмотреть несколько интересных на мой взгляд библиотек.

Ознакомиться



Python-digest #387. Новости, интересные проекты, статьи и интервью [17 мая 2021 — 23 мая 2021]

Добавляйте свои новости через специальную форму. Следите за всем этим безобразием в RSS, Twitter или Telegram @py_digest



Поддержите проект рублем или руками




Разукрашиваем вывод в консоли: теория и практика


Консоль привлекает многих своей минималистичностью и эстетикой, но даже в ней иногда хочется выделить определённый фрагмент, чтобы показать его роль или значимость. Например, отметить зелёным текстом сообщение об успешном выполнении операции или обозначить длинный текст ошибки курсивом. О том, как это делать, а также о реализации на питоне — читайте далее.

Читать дальше →



[Перевод] Как создавать интерактивные линейные графики на Pandas и Altair

Линейный график является неотъемлемой частью анализа данных. Он даёт нам представление о том, как величина изменяется при последовательных измерениях. В случае работы с временными рядами важность линейных графиков становится решающей. Тренд [направление], сезонность и корреляция — вот некоторые характеристики, которые можно наблюдать на аккуратно сгенерированных линейных графиках. В этой статье мы будем создавать интерактивные линейные графики с помощью двух библиотек Python — Pandas и Altair.

Мы уже затрагивали тему визуализаций при помощи библиотеки Altair на примере создания интерактивных карт, а сегодня, к старту курса о Data Science, решили поделиться простым руководством о том, как можно из множества графиков выделить самый важный; с этого р




«Маяки» в ЕГРЮЛ с python


На сайте nalog.ru есть очень удобный сервис, который «покрывает» такие страхи владельца бизнеса как увод компании из под контроля без участия самого владельца. Отчасти естественно «покрывает», так как если захотят увести компанию, один сервис налоговой в этом не поможет.
Сервис уведомляет владельца предприятия, если в налоговую попало заявление о внесении каких-либо изменений в отношении данных компании, содержащихся в ЕГРЮЛ. Далее владелец может среагировать на ситуацию, заблокировав регистрацию изменений, если они не были им инициированы. Чтобы реализовать этот своеобразный мониторинг, необходимо поставить на компанию так называемый «маяк». В данной статье посмотрим, как работает сервис, как и кто может поставить маяки, сколько их можно поставить и как все это сделать «пакетно» с помощью python.
Сам сервис находится по адресу на сайте налоговой



[Перевод] Топ 6 библиотек Python для визуализации: какую и когда лучше использовать?

Если вы только собираетесь начать работу с визуализацией в Python, количество библиотек и решений вас определенно поразит:

- Matplotlib

- Seaborn

- Plotly

- Bokeh

- Altair

- Folium

Но какую из этих библиотек лучше выбрать для визуализации DataFrame? Некоторые библиотеки имеют больше преимуществ для использования в некоторых конкретных случаях. В этой статье приведены плюсы и минусы каждой из них. Прочитав эту статью, вы будете разбираться в функционале каждой библиотеки и будете способны подбирать для ваших потребностей оптимальную.

Читать далее



[Перевод] OpenCV в Python: Часть 1 — Работа с изображениями и видео

Добро пожаловать! Перед вами первая статья из серии OpenCV в Python, которая, как вы уже догадались по названию, посвящена тому, как научиться комфортно работать в OpenCV.

Я понимаю, что у каждого свой стиль обучения, но я настоятельно рекомендую вам вместе со мной следовать за мыслью и писать код по мере прохождения уроков. Все файлы кода и данных будут доступны в конце каждой статьи. Если у вас будут появляться вопросы, не стесняйтесь их задавать.

Не будем терять времени, начнем!

Читать далее



Книга «Обработка естественного языка. Python и spaCy на практике»

Привет, Хаброжители! Python и spaCy помогут вам быстро и легко создавать NLP-приложения: чат-боты, сценарии для сокращения текста или инструменты принятия заказов. Вы научитесь использовать spaCy для интеллектуального анализа текста, определять синтаксические связи между словами, идентифицировать части речи, а также определять категории для имен собственных. Ваши приложения даже смогут поддерживать беседу, создавая собственные вопросы на основе разговора.

Вы научитесь:

• Работать с векторами слов, чтобы находить синонимы (глава 5).
• Выявлять закономерности в данных с помощью displaCy — встроенного средства визуализации библиотеки spaCy (глава 7).
• Автоматически извлекать ключевые слова из пользовательского ввода и сохранять их в реляционной базе данных (глава 9).
• Развертывать приложения на примере чат-бо