Публикации о языке Python   страница 3

Python-digest #193. Новости, интересные проекты, статьи и интервью [28 августа 2017 — 3 сентября 2017]

Оставляйте свои комментарии к выпуcкам, пишите нам в Slack (инвайт по ссылке), добавляйте свои новости через специальную форму. Следите за всем этим безобразием в RSS, Twitter или Telegram @py_digest



Поддержите проект рублем или руками




Лепим тулбар на PyQt, экспортируем данные в Excel и HTML

В предыдущей части я рассказывал о создании модуля для запуска SQL-запросов и оболочки, в которой эти модули запускаются. После недолгой работы с запросами возникает очевидный вопрос — а как воспользоваться результатом выборки, кроме как посмотреть на экране?
Для этого стоит сделать дополнительные инструменты экспорта и копирования данных. Экспортировать будем в файл в формате Excel, а копировать в системный буфер в формате HTML.
Но для начала прилепим к нашему главному окну панель инструментов.


Читать дальше →




Простые модели экономической динамики на Python

Введение


В моих публикациях [1,2] экономические задачи рассматривались в статике без учёта времени. В задачах оптимизации экономической динамики анализируются изменение экономических параметров и их взаимосвязей во времени. В моделях экономической динамики время может рассматриваться как дискретное изменяющееся скачком, например, за год. Для описания таких процессов используются разностные уравнения. При непрерывном изменении во времени для описания параметров модели используются дифференциальные уравнения.

Постановка задачи


Для первого знакомства с моделями экономической динамика достаточно рассмотреть две типовые модели. Это паутинообразная модель и модель и модель Калдора в которых и реализованы два указанных подхода к описанию экономической динамики.
Читать дальше →



Быстрый тест производительности Python для вычислительных задач

Мотивация


Совсем недавно вышла новая версия 0.34 библиотеки оптимизирующего JIT компилятора Numba для Python. И там ура! появилась долгожданная семантика аннотаций и набор методов для организации параллельных вычислений. За основу была взята технология Intel Parallel Accelerator.

В данной статье я хочу поделиться результатами первого тестирования скорости вычислений на основе этой библиотеки для некоторой современной машины с четырехядерным процессором.
Читать дальше →



Настраиваем Django + virtualenv + nginx + gunicorn + PostgreSQL + memcached + letsencrypt на Ubuntu 16.04

В данной статье я опишу процесс настройки связки Django + virtualenv + nginx + gunicorn + PostgreSQL + memcached + letsencrypt на Ubuntu 16.04 на VPS DigitalOcean для своего форума https://pythonworld.club.

Читать далее...




Pygest #16. Релизы, статьи, интересные проекты из мира Python [15 августа 2017 — 28 августа 2017]

Всем привет! Это уже шестнадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Перейти к дайджесту



Python-digest #192. Новости, интересные проекты, статьи и интервью [21 августа 2017 — 27 августа 2017]

Оставляйте свои комментарии к выпуcкам, пишите нам в Slack (инвайт по ссылке), добавляйте свои новости через специальную форму. Следите за всем этим безобразием в RSS, Twitter или Telegram @py_digest



Поддержите проект рублем или руками




Решение прямой и двойственной задачи линейного программирования средствами Python

Введение


Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.

Постановка задачи


В публикациях [1,2] рассматривались решения прямых задач оптимизации методом линейного программирования и был предложен обоснованный выбор решателя scipy. optimize.

Однако известно [3], что каждой задаче линейного программирования соответствует так называемая выделенная(двойственная)задача. В ней по сравнению с прямой задачей строки переходят в столбцы, неравенства меняют знак, вме



[Из песочницы] Точим себе инструмент на PyQt

Мне нужен был инструмент. Острый, практичный, универсальный. Отвечающий всем моим требованиям и расширяемый по моему желанию.



Но простой и удобный. Тут надо отметить, что на основной работе я не разработчик, поэтому постоянной среды программирования на рабочем компе не имею и, когда это требуется, пишу на чем придется — bat, JScript, VBA в MSOffice (да, это Windows, корпоративные системы, тут нет bash и perl «из коробки»), макросы в разном ПО и т.д. Все это помогает решить текущую задачу, но уровень и возможности маленько не те, что хотелось бы иметь.

Короче, мне нужна интегрированная среда со встроенным языком программирования, в которой я мог разбирать и конвертировать файлы, лазить в базы данных, получать отчеты, вызывать веб-сервисы, плодить запросы в джире и т.д., и т.п.

Вы скажете, что сейчас есть инструменты на любой вкус и цвет, только выбирай. Лягу




Машинное обучение: от Ирисов до Телекома



Мобильные операторы, предоставляя разнообразные сервисы, накапливают огромное количество статистических данных. Я представляю отдел, реализующий систему управления трафиком абонентов, которая в процессе эксплуатации у оператора генерирует сотни гигабайт статистической информации в сутки. Меня заинтересовал вопрос: как в этих Больших Данных (Big Data) выявить максимум полезной информации? Не зря ведь одна из V в определении Big Data — это дополнительный доход.

Я взялся за эту задачу, не являясь специалистом в исследовании данных. Сразу возникла масса вопросов: какие технические средства использовать для анализа? На каком уровне достаточно знать математику, статистику? Какие методы машинного обучения надо знать и насколько глубоко? А может лучше для начала освоить специализированный язык для исследования данных R или P