Публикации о языке Python   страница 5

[Перевод] Продвинутый уровень визуализации данных для Data Science на Python

Как сделать крутые, полностью интерактивные графики с помощью одной строки Python



Заблуждение о заниженной стоимости является одним из многих вредных когнитивных предубеждений, жертвой которых становятся люди. Это относится к нашей тенденции продолжать посвящать время и ресурсы проигранному делу, потому что мы уже потратили — утонули — так много времени в погоне. Заблуждение о заниженной стоимости применимо к тому, чтобы оставаться на плохой работе дольше, чем мы должны, рабски работать над проектом, даже когда ясно, что он не будет работать, и да, продолжать использовать утомительную, устаревшую библиотеку построения графиков — matplotlib — когда существуют более эффективные, интера



[Перевод] Расширьте возможности машинного обучения Azure с помощью расширения VS Code

Привет сообществу Python! Прошло много времени с тех пор, как мы последний раз писали об этом, но мы рады представить новые возможности, добавленные в расширение VS Code Azure Machine Learning (AML). Начиная с версии 0.6.12, мы представили изменения в пользовательском интерфейсе и способы, которые помогут вам управлять хранилищами данных, наборами данных и вычислениями прямо из любимого редактора!

Возможно некоторые из вас читают о Azure ML и расширении впервые — не волнуйтесь, мы здесь, чтобы рассказать об этом больше.

Azure ML — это сервис машинного обучения, который предоставляет исследователям, работающим с данными, широкий набор инструментов для создания, обучения и развертывания моделей. Расширение AML — это сопутствующий инструмент, который обеспечивает управляемый опыт, помогающий создавать ресурсы и управлять ими непосредственно из VS Code. Расширение направлено на оптимизацию задач, таких как проведение экспериментов, создание вычислительных целей и управ




Используем DS для обработки отзывов клиентов с крупных сайтов



Похожие кейсы мы уже рассматривали на нашем сайте:

  1. Создаем свой RSS-агрегатор
  2. Парсер новостных лент с возможностью поиска по ключевым словам

В сегодняшнем кейсе мы использовали библиотеки языка Python, такие как: Selenium, BeautifulSoup. Получилось около 27 тысяч отзывов, начиная с 2018 года. В среднем каждый отзыв занимал 2 абзаца листа А4. В 70 % отзывов была проставлена оценка клиентами, в оставшихся 30% — оценка не была проставлена. Полученные данные, у которых были проставлены оценки, мы решили использовать как исходные данные для построения модели обучения с учителем. Модель в дальнейшем нам нужна была, чтобы определить оценку у оставшихся 30% отзывов.

Проставленные оценки были от 1 до 5, но н



Python-digest #342. Новости, интересные проекты, статьи и интервью [6 июля 2020 — 12 июля 2020]

Добавляйте свои новости через специальную форму. Следите за всем этим безобразием в RSS, Twitter или Telegram @py_digest



Поддержите проект рублем или руками




Бесплатная Академия Аналитиков Авито для начинающих

В сентябре стартует Академия Аналитиков Авито — бесплатная программа для тех, кому интересно научиться работать с данными. Приём заявок уже открыт, записаться на курс можно до 16 июля.


Курс длится девять месяцев, за которые студенты погрузятся в специфику работы аналитика и освоят основные навыки от прикладной статистики до SQL и Python. На этом пути помогут опытные преподаватели из Авито, Сбертеха, Ситимобил и Высшей школы экономики.


Читать дальше →



CPython библиотека «ВКФ» для машинного обучения

В предыдущей заметке автора был описан web-сервер для проведения экспериментов с ВКФ-методом машинного обучения, основанного на теории решеток. Как альтернатива использования web-сервера в настоящей заметке сделана попытка указать путь использования CPython-библиотеки напрямую. Мы воспроизведем рабочие сессии экспериментов с массивами Mushroom и Wine Quality из UCI репозитория данных для тестирования алгоритмов машинного обучения. Потом будут даны объяснения о форматах входных данных.


Читать дальше →




[Перевод] Мастерство Data Science: Автоматизированное конструирование признаков на Python



Машинное обучение все больше переходит от моделей, разработанных вручную, к автоматически оптимизированным пайплайнам с использованием таких инструментов, как H20, TPOT и auto-sklearn. Эти библиотеки, наряду с такими методами, как случайный поиск, стремятся упростить выбор модели и настройку частей машинного обучения, находя лучшую модель для набора данных без какого-либо ручного вмешательства. Однако разработка объектов, возможно, более ценный аспект пайплайнов машинного обучения, остается почти полностью человеческим трудом.



[Перевод] В каких случаях не нужно использовать списки в Python

Перевод статьи подготовлен в преддверии старта базового курса «Разработчик Python».




В Python, наверное, самым популярным контейнером данных будет список (list). Он настолько гибкий, что его можно использовать в проектах почти повсеместно и хранить в нем данные различного типа: целые числа, строки и экземпляры пользовательских классов. Помимо этого, список мутабелен, что позволяет нам добавлять или удалять элементы по мере необходимости. По вышеперечисленным причинам некоторые программисты склонны слишком часто использовать списки и даже не рассматривать жизнеспособные альтернативы.


В этой статье, я хотел бы выделить пять вариантов использования, в которых можно найти лучшую альтернативу спискам.

Читать дальше →



[Перевод] 10 предпочтительных методов рефакторинга кода на Python

Сделайте свой Python код читабельнее и производительнее



Python – язык программирования общего назначения, широко используемый в научных вычислениях, искусственном интеллекте, веб-разработке, финансовом моделировании и во многих других областях. Основная причина его популярности заключается в гибкости – есть множество решений для разного рода операций. Однако, в большинстве случаев есть всего лишь одно решение, которое считается предпочтительным среди опытных Python программистов. В этой статье я бы хотел сделать обзор 10 характерных для этого языка практических примеров, которые можно оценить и взять на вооружение для рефакторинга кода на Python.

Читать дальше →



Учимся квантовому программированию на Python с помощью примеров. Доклад Яндекса

Сегодня любой желающий может воспользоваться методами квантового программирования, написать простой код на Python и запустить его на реальном квантовом вычислителе. Ришат Ибрагимов rishat_ibrahimov разобрал основы квантовых вычислений на примерах с кодом, показал, как запускать программы на локальном симуляторе и удаленном квантовом компьютере.


— Всем привет, меня зовут Ришат. Я почти три года работаю над качеством поиска Яндекса. Но поговорить сегодня хочу не о работе, а о том, чем я занимаюсь в свободное время. Занимаюсь я квантовой информатикой, а на самом деле — самыми разными моделями вычислений, в том числе квантовыми.
Читать дальше →