Публикации о языке Python   страница 9

Мелкая питонячая радость #5: Dynaconf — управление настройками в проекте

Некоторые вопросы в мире питонячей разработки имеют магическую силу поднимать целые армии людей, направлять их на священную войну и заставлять кидать друг в друга целыми кучами аргументов, выкладок и кусков кода. Иногда, когда доводы заканчиваются, враждующие армии быстро переходят к ведению боевых действий с помощью перекидывание кучек вербальных экскрементов.


К популярным темам относятся вопросы:


  • Надо ли вообще этот проект писать на Python?
  • Какой фреймворк взять для разработки?
  • Кто быстрее, библиотека X или библиотека Y?

Сегодня я попробую аккуратно подковырнуть как раз одну из таких магических тем — вопрос "Как управлять конфигами в проекте?".


Читать дальше →



Реализация целого типа в CPython

На Хабре уже были статьи о подробностях реализации менеджера памяти CPython, Pandas, я написал статью про реализацию словаря.

Казалось бы, что можно написать про обычный целочисленный тип? Однако тут не всё так просто и целочисленный тип не такой уж и очевидный.

Если вам интересно, почему x * 2 быстрее x << 1.

И как провернуть следующий трюк:

>>> 42 == 4
True
>>> 42
4
>>> 1 + 41
4


То вам стоит ознакомиться с данной статьёй.
Читать дальше →



[Перевод] Деплоим на PythonAnywhere из GitHub



Каждый может сделать так:


локальный проект → github


С (платным) ssh доступом вы сможете сделать так:


локальный проект → PythonAnywhere


В статье показано как (бесплатно) сделать так:


локальный проект → github → PythonAnywhere


Сначала я перечислю, зачем вам это может быть нужно, а затем перейду к тому как реализовать. Не стесняйтесь просколлить статью, если первая часть вам не интересна.




[Перевод] 10 фич для ускорения анализа данных в Python

Источник

Советы и рекомендации, особенно в программировании, могут быть очень полезны. Маленький шоткат, аддон или хак может сэкономить кучу времени и серьёзно увеличить производительность. Я собрала свои самые любимые и сделала из них эту статью. Какие-то из советов ниже уже известны многим, а какие-то появились совсем недавно. Так или иначе, я уверена, они точно не будут лишними, когда вы в очередной раз приступите к проекту по анализу данных.


1. Профилирование Pandas Dataframe


Профилирование помогает лучше понять наши данные, и пакет Pandas Profiling создан как раз для этого. Библиотека даст возможность просто и быстро выполнить




Как решить старую задачу с помощью ML на Python и .Net


Бывает, что некоторые задачи преследуют тебя много лет. Для меня такой задачей стала склейка предложений текстов, в которых жестко забит переход на новую строку, а часто еще и перенос слов. На практике, это извлеченный из PDF или с помощью OCR текст. Часто можно было встретить такие тексты на сайтах он-лайн библиотек, в архивах старых документов, которые редактировались еще DOS-редакторами. И такое форматирование очень мешает затем правильной разбивке на предложения (а с переносами — и на токены) для последующей NLP-обработки. Да и банально показать такой документ в поисковой выдаче — будет некрасиво.


Решал я эту задачу несколько раз — на Delphi, C#. Тогда это был жесткий алгоритм, где руками прописывал, например, какая может быть ширина текста, чтобы этот текст считался отформатированным "по-старому". Не всегда это срабатывало идеально, но в общем, хватало.




Python-digest #287. Новости, интересные проекты, статьи и интервью [17 июня 2019 — 23 июня 2019]

Добавляйте свои новости через специальную форму. Следите за всем этим безобразием в RSS, Twitter или Telegram @py_digest



Поддержите проект рублем или руками




[Из песочницы] Создаем прототип для Sentiment Analysis с помощью Python и TextBlob


Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирования с помощью интеграционных и юнит тестов, сделать прототип и получить первые результаты. И далее к оценке трудоемкости, планированию разработки и реализации.

В этой статье речь пойдет как раз о прототипе. Который был создан через некоторое время после разговора с Product Manager: а почему бы нам не «пощупать» Machine Learning? В частности, NLP и Sentiment Analysis?
Читать дальше →



Python потребляет много памяти или как уменьшить размер объектов?

Проблема памяти может возникнуть, когда в процессе выполнения программы нужно иметь большое количество объектов, особенно если есть ограничения на общий размер доступной оперативной памяти.
Ниже приводится обзор некоторых методов уменьшения размера объектов, которые позволяют существенно сократить объем оперативной памяти, необходимой для программ на чистом Python.

Читать дальше →



Python не запрещает вызов private/protected методов потому, что любит тебя :-)

Много копий сломано в обсуждениях того, почему питон эдакий бяка — не запрещает вызывать непубличные методы. И конечно, не раз звучали объяснения в духе «мы все тут взрослые люди», но похоже их было недостаточно, мне кажется, я наконец понял, как это объяснить более понятно, надеюсь, что это действительно так.
Напомню, что для private методов питон всего-лишь динамически изменяет имя и никак не ограничивает доступ к нему, а для protected не делает и этого, это просто соглашение об именовании методов, для тех кто не очень в курсе, есть дополнительные материалы тут и тут. Читать дальше →




Мелкая питонячая радость #4: Radon — качество кода, измеренное в числах

Инженеры очень любят измерения и числа. Поэтому нет ничего удивительного в том, что они пытаются измерять в численном виде такую нетривиальную штуку, как качество кода.



Метрик для оценки текстов программ придумали немало — от банального количества строк кода в проекте до не столь очевидного "индекса поддерживаемости" (Maintainability Index). Подробно про все существующие способы обмазывания кода всякими метриками можно почитать в этой статье.


В мире Python, конечно же, есть своя штука для оценки качества кода. Она называется radon. Она написана на Python и работает исключительно с питонячими файлами.

Читать дальше →