Посты с тэгом алгоритмы


Как обучть мдль пнмть упртые скрщня

Недавно я натолкнулся на вопрос на Stackoverflow, как восстанавливать исходные слова из сокращений: например, из wtrbtl получать water bottle, а из bsktballbasketball. В вопросе было дополнительное усложнение: полного словаря всех возможных исходных слов нет, т.е. алгоритм должен быть в состоянии придумывать новые слова.


Вопрос меня заинтриговал, и я полез разбираться, какие алгоритмы и математика лежат в основе современных опечаточников (spell-checkers). Оказалось, что хороший опечаточник можно собрать из n-граммной языковой модели, модели вероятности искажений слов, и жадного алгоритма поиска по лучу (beam search). Вся конструкция вместе называется модель зашумлённого канала (noisy channel).


Вооружившись этими знаниями и Питоном, я за вечер создал с нуля модельку, способную, обучившись на тексте "В



Математические модели релейно-импульсных регуляторов



Введение

Важнейшей задачей автоматического управления любыми технологическими процессами является разработка математического описания, расчет и анализ динамики автоматических систем регулирования (АСР).

Практика промышленного использования микропроцессорных регулирующих приборов (МРП) показала, что “идеальные алгоритмы” физически не реализуемы. Синтезированная на их основе АСР не отражает поведение реальной системы [1].

Отклонения алгоритмов от идеализированных при определенных условиях, например, для релейно-импульсных регуляторов, когда скорость исполнительного механизма соответствует реальной динамике объекта, поведение реальной системы с достаточной степенью точности соответствует результатам математической модели.

Релейно-импульсные регуляторы применяются в микропроцессорных регулирующих приборах, где наблюдается следующая тенденция. Например


[Из песочницы] Пробуем q-learning на вкус, повесть в трех частях

Эта статья — небольшая заметка о реализации алгоритма q-learning для управления агентом в стохастическом окружении. Первая часть статьи будет посвящена созданию окружения для проведения симуляций — мини-игр на поле nxn, в которых агент должен как можно дольше продержаться на удалении от противников, движущихся случайным образом. Задача противников, соответственно, его настигнуть. Очки начисляются за каждый ход, проведенный агентом в симуляции. Вторая часть статьи затронет основы q-learning алгоритма и его имплементацию. В третьей части попробуем поменять параметры, которые определяют восприятие окружения агентом. Проанализируем влияние этих параметров на результативность его игры. Акцент я специально сместил в сторону использования минимального количества сторонних модулей. Цель — прикоснуться к самой сути алгоритма, так сказать потрогать руками. Для реализации будем использовать только «pure» python 3.



[Перевод] Как я написал приложение, которое за 15 минут делало тоже самое, что и регулярное выражение за 5 дней

От переводчика


Ни так давно столкнулся с проблемой поиска набора слов в большом тексте. Разумеется главной проблемой стала производительность. Поиск готовых решений порождал больше вопросов, чем давал ответов. Часто я натыкался на примеры использования каких-то сторонних коробок или онлайн-сервисов. А мне в первую очередь нужно было простое и легкое решение, которое в дальнейшем дало бы мысли для реализации собственной утилиты.

Несколько недель назад вышла замечательная англоязычная статься об open-source python-библиотеки FlashText. Эта библиотека предоставляла быстрое работающее решение задачи поиска и замены ключевых слов в тексте.

Т.к. на русском материалов подобной тематики ни так много, то я решил перевести эту статью на русский. Под катом вас ждет описание проблемы, разбор принципа работы библиотеки а так же примеры тестов производительности. Поехали


[Перевод] Как я написал приложение, которое за 15 минут делало то же самое, что и регулярное выражение за 5 дней

От переводчика


Не так давно столкнулся с проблемой поиска набора слов в большом тексте. Разумеется главной проблемой стала производительность. Поиск готовых решений порождал больше вопросов, чем давал ответов. Часто я натыкался на примеры использования каких-то сторонних коробок или онлайн-сервисов. А мне в первую очередь нужно было простое и легкое решение, которое в дальнейшем дало бы мысли для реализации собственной утилиты.

Несколько недель назад вышла замечательная англоязычная статься об open-source python-библиотеки FlashText. Эта библиотека предоставляла быстрое работающее решение задачи поиска и замены ключевых слов в тексте.

Т.к. на русском материалов подобной тематики не так много, то я решил перевести эту статью на русский. Под катом вас ждет описание проблемы, разбор принципа работы библиотеки а так же примеры тестов производительности. Поехали


Блиц. Как попасть в Яндекс, минуя собеседование

Редко когда кандидат проходит только одно техническое собеседование — обычно их несколько. Среди причин, почему человеку они могут даваться непросто, можно назвать и ту, что каждый раз приходится общаться с новыми людьми, думать о том, как они восприняли твой ответ, пытаться интерпретировать их реакцию. Мы решили попробовать использовать формат контеста, чтобы сократить количество итераций для всех участников процесса.



Для Блица мы выбрали исключительно алгоритмические задачи. Хотя для оценки раундов и применяется система ACM, в отличие от спортивного программирования все задания максимально приближены к тем, которые постоянно решают в продакшене Поиска. Те, кто решит успешно хотя бы четыре задачи из шести, могут считать, что прошли перв



Машинное обучение руками «не программиста»: классификация клиентских заявок в тех.поддержку

Привет! Меня зовут Кирилл и я алкоголик более 10 лет был менеджером в сфере ИТ. Я не всегда был таким: во время учебы в МФТИ писал код, иногда за вознаграждение. Но столкнувшись с суровой реальностью (в которой необходимо зарабатывать деньги, желательно побольше) пошел по наклонной — в менеджеры.




Но не все так плохо! С недавнего времени мы с партнерами целиком и полностью ушли в развитие своего стартапа: системы учета клиентов и клиентских заявок Okdesk. С одной стороны — больше свободы в выборе направления движения. Но с другой — нельзя просто так взять и заложить в бюджет "3-х разработчиков на 6 месяцев для проведение исследований и разработки прототипа для…". Много приходится делать самим. В том числе — непрофильные эксперименты, связанные с разработкой (т.е. те эксперименты, что не относятся к основной функциональности прод



Сегментация лица на селфи без нейросетей

Приветствую вас, коллеги. Оказывается, не все компьютерное зрение сегодня делается с использованием нейронных сетей. Хотя многие стартапы и заявляют, что у них дип лернинг везде, спешу вас разочаровать, они просто хотят хайпануть немножечко. Рассмотрим, например, задачу сегментации. В нашем слаке развернулась целая драма. Одна богатая и высокотехнологичная селфи-компания собрала датасет для сегментации селфи с помощью нейросетей (а это непростое и недешевое занятие). А другая, более бедная и не очень развитая решила, что можно подкупить людей, размечающих фотки, и спполучить базу. В общем, страсти в этих ваших Интернетах еще те. Недавно я наткнулся на статью, где без всяких нейросетей на устройстве де



Метод оптимизации Trust-Region DOGLEG. Пример реализации на Python



Trust-region метод (TRM) является одним из самых важных численных методов оптимизации в решении проблем нелинейного программирования (nonlinear programming problems). Метод базируется на определении региона вокруг лучшего решения, в котором квадратичная модель аппроксимирует целевую функцию.

Методы линейного поиска (line search) и методы trust-region генерируют шаги с помощью аппроксимации целевой функции квадратичной моделью, но использую они эту модель по-разному. Линейный поиск использует её для получения направления поиска и дальнейшего нахождения оптимального шага вдоль направления. Trust-region метод определяет область (регион) вокруг текущей итерации, в котором модель достаточно аппроксимирует целевую функцию. В целях повышения эффективности направление и длина шага выбираются одновременно.

Trust-region методы надежны и устойчивы, могут быть примене


Метод BFGS или один из самых эффективных методов оптимизации. Пример реализации на Python



Метод BFGS, итерационный метод численной оптимизации, назван в честь его исследователей: Broyden, Fletcher, Goldfarb, Shanno. Относится к классу так называемых квазиньютоновских методов. В отличие от ньютоновских методов в квазиньютоновских не вычисляется напрямую гессиан функции, т.е. нет необходимости находить частные производные второго порядка. Вместо этого гессиан вычисляется приближенно, исходя из сделанных до этого шагов.

Существует несколько модификаций метода:
L-BFGS (ограниченное использование памяти) — используется в случае большого количества неизвестных.
L-BFGS-B — модификация с ограниченным использованием памяти в многомерном кубе.

Метод эффективен и устойчив, поэтому зачастую применяется в функциях оптимизации. Например в SciPy, популярн