Посты с тэгом численные методы


Численные методы решения систем нелинейных уравнений

Введение


Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через


Метод оптимизации Trust-Region DOGLEG. Пример реализации на Python



Trust-region метод (TRM) является одним из самых важных численных методов оптимизации в решении проблем нелинейного программирования (nonlinear programming problems). Метод базируется на определении региона вокруг лучшего решения, в котором квадратичная модель аппроксимирует целевую функцию.

Методы линейного поиска (line search) и методы trust-region генерируют шаги с помощью аппроксимации целевой функции квадратичной моделью, но использую они эту модель по-разному. Линейный поиск использует её для получения направления поиска и дальнейшего нахождения оптимального шага вдоль направления. Trust-region метод определяет область (регион) вокруг текущей итерации, в котором модель достаточно аппроксимирует целевую функцию. В целях повышения эффективности направление и длина шага выбираются одновременно.

Trust-region методы надежны и устойчивы, могут быть примене