Посты с тэгом data science


[Перевод] Почему стоит начать использовать FastAPI прямо сейчас

Привет, Хабровчане! В преддверии старта занятий в группах базового и продвинутого курсов «Разработчик Python», мы подготовили для вас еще один полезный перевод.



Python всегда был популярен для разработки легковесных веб-приложений благодаря потрясающим фреймворкам, таким как Flask, Django, Falcon и многим другим. Из-за лидирующей позиции Python как языка для машинного обучения, он особенно удобен для упаковки моделей и предоставления их в качестве сервиса.

В течение многих лет Flask был основным инструментом для таких задач, но, если вы еще не слышали, на его место появился новый претендент. FastAPI – это относительно новый фреймворк на Python, создание которого было вдохновлено его предшественниками. Он совершенствует их функционал и исправляет множество недостатков. FastAPI был построен на базе Starlette, и несет в себе куч


[Перевод] Мастерство Data Science: Автоматизированное конструирование признаков на Python



Машинное обучение все больше переходит от моделей, разработанных вручную, к автоматически оптимизированным пайплайнам с использованием таких инструментов, как H20, TPOT и auto-sklearn. Эти библиотеки, наряду с такими методами, как случайный поиск, стремятся упростить выбор модели и настройку частей машинного обучения, находя лучшую модель для набора данных без какого-либо ручного вмешательства. Однако разработка объектов, возможно, более ценный аспект пайплайнов машинного обучения, остается почти полностью человеческим трудом.


[Перевод] О нет! Моя Data Science ржавеет

Привет, Хабр!

Предлагаем вашему вниманию перевод интереснейшего исследования от компании Crowdstrike. Материал посвящен использованию языка Rust в области Data Science (применительно к malware analysis) и демонстрирует, в чем Rust на таком поле может посоперничать даже с NumPy и SciPy, не говоря уж о чистом Python.


Приятного чтения!
Читать дальше →


[Перевод] Как создать свой первый open source проект на Python (17 шагов)

Каждый разработчик ПО должен знать как создать библиотеку с нуля. В процессе работы Вы можете многому научиться. Только не забудьте запастись временем и терпением.

Может показаться, что создать библиотеку с открытым исходным кодом сложно, но Вам не нужно быть потрепанным жизнью ветераном своего дела, чтобы разобраться в коде. Также как Вам не нужна мудреная идея продукта. Но точно понадобятся настойчивость и время. Надеюсь, что данное руководство поможет Вам создать первый проект с минимальной затратой и первого, и второго.

В этой статье мы пошагово разберем процесс создания базовой библиотеки на Python. Не забудьте заменить в приведенном ниже коде my_package, my_file и т.п. нужными вам именами.

Шаг 1: Составьте план


Мы планируем создать простую библиотеку для использования в Python. Данная библиотека позволит пользователю легко конвертировать блокнот Jupyter в HTML-файл или Python-скрипт.
Первая итерация нашей биб


[Перевод] 10 полезных практик для ML-разработчиков на Питоне

Порой, будучи дата саентистами, мы забываем за что нам платят. А платят нам за то, что мы в первую очередь разработчики, потом исследователи и, возможно, математики. Наша основная обязанность при этом состоит в том, чтобы быстро создавать работоспособные решения для бизнеса.

Тот факт что мы создаем модели не делает нас особенными. Это не дает нам права писать плохой код.


Читать дальше →



[Перевод] 17 самых распространенных ошибок новичков в Python и как их фиксить



Выяснить, что означают сообщения об ошибках Python, может быть довольно сложно, когда вы впервые изучаете язык. Вот список распространенных ошибок, которые приводят к сообщениям об ошибках во время выполнения, которые могут привести к сбою вашей программы.

1) Пропуск “:” после оператора if, elif, else, for, while, class или def. (Сообщение об ошибке: “SyntaxError: invalid syntax”)

Пример кода с ошибкой:

if spam == 42

    print('Hello!')


2) Использование = вместо ==. (Сообщение об ошибке: “SyntaxError: invalid syntax”)

= является оператором присваивания, а == является оператором сравнения «равно». Пример кода с ошибкой:

if spam = 42:

  


[Перевод] Python.org рекомендует: Программирование для НЕпрограммистов

Предлагаем вашему вниманию подборку материалов от python.org о том, с чего начать первые шаги в программировании.



Если Вы никогда не занимались программированием раньше, эти материалы для вас. Данные туториалы не предполагают, что у вас есть какой-то опыт. (Если у вас уже есть опыт программирования, посетите Beginners Guide).
Читать дальше →


PyDoma [PyData Moscow Meetup #12]: 26 мая 2020


26 (вторник) мая 2020, т.е. уже завтра, DataGym совместно с ODS проведет бесплатный онлайн PyData Moscow Meetup под флагом самоизоляции и благотворительности — PyDoma.
PyData Moscow Meetup — это события, посвященные Сбору, Хранению, Обработке, Анализу и Визуализации данных на Python.

Трансляция пройдет на YouTube-канале, обсуждение со спикером пройдет в Zoom-комнате.

Вас ждут 4 интересных доклада:
Читать дальше →


[Перевод] Как выучиться на Data Scientist: наиболее востребованные технические навыки

Какие технические знания становятся наиболее популярными у работодателей, а какие теряют свою популярность.



В своей первоначальной статье 2018-го года я рассматривал спрос на общие навыки – статистику и коммуникацию. Также я рассматривал спрос на Python и язык программирования R. Технологии создания программного обеспечения меняются намного быстрее, чем спрос на общие навыки, поэтому в этот обновленный анализ я включаю только технологии.

Я искал ключевые слова, которые появлялись в списках вакансий на должность «Data Scientist» в США на таких сайтах как SimplyHired, Indeed, Monster и LinkedIn



[Перевод] 5 визуализаций, который помогут улучшить Data Story

Статья переведена в преддверии запуска курса «Разработчик Python».



Сторителлинг – один из важнейших навыков для специалистов, которые занимаются анализом данных. Чтобы доносить идеи и делать это убедительно, нужно простраивать эффективную коммуникацию. В этой статье мы познакомимся с 5 методами визуализации, которые выходят за рамки классического понимания, и могут сделать вашу Data Story более эстетичной и красивой. Работать мы будем с графической библиотекой Plotly на Python (она также доступна на R), которая позволяет создавать анимированные и интерактивные диаграммы с минимальными усилиями. Читать дальше →