Посты с тэгом llvm


А что, если без Python? Julia для машинного обучения и вообще

Мы всегда хотим писать код быстро, но за это приходится платить. На обычных высокоуровневых гибких языках можно быстро разрабатывать программы, но после запуска они работают медленно. Например, чудовищно медленно cчитать что-то тяжелое на чистом Python. Си-подобные языки работают гораздо быстрее, но в них легче наделать ошибок, поиск которых сведет весь выигрыш в скорости на нет.

Обычно эта дилемма решается так: сначала пишут прототип на чем-то гибком, например, на Python или R, а потом переписывают на C/C++ или Fortran. Но этот цикл слишком длинный, можно ли обойтись без этого?



Возможно, решение есть. Julia — высокоуровневый и гибкий, но при этом быстрый язык программирования. В Julia есть множественная диспетчеризация, встроенный умный компилятор и инструменты метапрограммирования. Подробнее о том, что есть в Julia, расскажет Глеб Ивашкевич (



Пример разбора C++ кода с помощью libclang на Python

На одном личном проекте на C++ мне потребовалось получать информацию о типах объектов во время выполнения приложения. В C++ есть встроенный механизм Run-Time Type Information (RTTI), и конечно же первая мысль была использовать именно его, но я решил написать свою реализацию, потому что не хотел тянуть весь встроенный механизм, ведь мне нужна была лишь малая часть его функционала. А еще хотелось попробовать на практике новые возможности C++ 17, с которыми я был не особо знаком.


В этом посте представлю пример работы с парсером libclang на языке Python.

Читать дальше →