Посты с тэгом machine learning


[Перевод] 10 вещей, которые вы могли не знать о scikit-learn

В этой переведенной статье ее автор, Rebecca Vickery, делится интересными функциями scikit-learn. Оригинал опубликован в блоге towardsdatascience.com.


Фото с сайта Unsplash. Автор: Sasha • Stories

Scikit-learn является одной из наиболее широко используемых библиотек Python для машинного обучения. Ее простой стандартный интерфейс позволяет производить препроцессинг данных, а также заниматься обучением, оптимизацией и оценкой модели.

Этот проект, разработанный Дэвидом Курнапо (David Cournapeau), появился на свет в рамках программы Google Summer of Code и



[Перевод] Почему стоит начать использовать FastAPI прямо сейчас

Привет, Хабровчане! В преддверии старта занятий в группах базового и продвинутого курсов «Разработчик Python», мы подготовили для вас еще один полезный перевод.



Python всегда был популярен для разработки легковесных веб-приложений благодаря потрясающим фреймворкам, таким как Flask, Django, Falcon и многим другим. Из-за лидирующей позиции Python как языка для машинного обучения, он особенно удобен для упаковки моделей и предоставления их в качестве сервиса.

В течение многих лет Flask был основным инструментом для таких задач, но, если вы еще не слышали, на его место появился новый претендент. FastAPI – это относительно новый фреймворк на Python, создание которого было вдохновлено его предшественниками. Он совершенствует их функционал и исправляет множество недостатков. FastAPI был построен на базе Starlette, и несет в себе куч


Бесплатная Академия Аналитиков Авито для начинающих

В сентябре стартует Академия Аналитиков Авито — бесплатная программа для тех, кому интересно научиться работать с данными. Приём заявок уже открыт, записаться на курс можно до 16 июля.


Курс длится девять месяцев, за которые студенты погрузятся в специфику работы аналитика и освоят основные навыки от прикладной статистики до SQL и Python. На этом пути помогут опытные преподаватели из Авито, Сбертеха, Ситимобил и Высшей школы экономики.


Читать дальше →


Генерируем странные кулинарные рецепты с помощью TensorFlow и рекуррентной нейронной сети (пошаговая инструкция)

TL;DR


Я натренировал LSTM (Long short-term memory) рекуррентную нейронную сеть (RNN) на наборе данных, состоящих из ~100k рецептов, используя TensorFlow. В итоге нейронная сеть предложила мне приготовить "Сливочную соду с луком", "Клубничный суп из слоеного теста", "Чай со вкусом цукини" и "Лососевый мусс из говядины" ‍.


Используя следующие ссылки вы сможете генерировать новые рецепты самостоятельно и найти детали тренировки модели:




Рекуррентные нейронные сети — пример генерации музыки


Сегодня попробуем создать простую музыку при помощи сетей LSTM.


Целю статьи есть указание возможностей сетей на практике, будет интересно какой результат получится у читателя, сможете оставить ссылки на свой варианты в комментариях.
Минимальные навыки, нужные читателю, чтобы мочь сделать собственный вариант:


  • Python3
  • BASH
  • jupyter-notebook.

Не буду одобрять комментарии, в которых есть суть только:


  • причинить досаду автору, примерно про опечатки(я не являюсь носителем русского языка).
  • несущественные замечания и комментарии.
  • все что не касается сути стати.
Читать дальше →


[Перевод] Интерактивные эксперименты с машинным обучением (на TensorFlow)

Вкратце


Я создал новый проект Интерактивные эксперименты с машинным обучением на GitHub. Каждый эксперимент состоит из Jupyter/Colab ноутбука, показывающего как модель тренировалась, и Демо странички, показывающей модель в действии прямо в вашем браузере.


Несмотря на то, что машинные модели в репозитории могут быть немного "туповатенькими" (помните, это всего-лишь эксперименты, а не вылизанный код, готовый к "заливке на продакшн" и дальнейшему управлению новыми Tesla), они будут стараться как могут чтобы:


  • Распознать цифры и прочие эскизы, которые вы нарисуете в браузере
  • Определить и распознать объекты на видео из вашей камеры
  • Классифицировать изображения, загруженные вами
  • Написать с вами поэму в стиле Шекспира
  • И даже поиграть с вами в камень-ножницы-бумагу
  • и пр.

Я трени



Член программного комитета PyConRu 2020 отвечает на вопросы об языке Python: актуальный взгляд и немного парселтанга

Антон Патрушев – очень опытный python-разработчик, постоянный член программного комитета PyCon Russia и старый друг конференции. Он работает с языком python уже много лет, начинал свое знакомство с ним в Naumen, теперь является СТО в Spherical, а еще это была именно идея Антона провести PyCon в России.




Мы, организаторы PyCon Russia, поговорили с Антоном на парселтанге, и вот что получилось :)

Читать дальше →


[Перевод] Представляем PyCaret: открытую low-code библиотеку машинного обучения на Python

Всем привет. В преддверии старта курса «Нейронные сети на Python» подготовили для вас перевод еще одного интересного материала.



Рады представить вам PyCaret – библиотеку машинного обучения с открытым исходным кодом на Python для обучения и развертывания моделей с учителем и без учителя в low-code среде. PyCaret позволит вам пройти путь от подготовки данных до развертывания модели за несколько секунд в той notebook-среде, которую вы выберете.

По сравнению с другими открытыми библиотеками машинного обучения, PyCaret – это low-code альтернатива, которая поможет заменить сотни строк кода всего парой слов. Скорость проведения более эффективных экспериментов возрастет экспоненциально. PyCaret – это, по сути, оболочка Python над несколькими библиотеками машинного обучения, такими как scikit-learn,


Детектирование аномалий с помощью автоенкодеров на Python

Детектирование аномалий — интересная задача машинного обучения. Не существует какого-то определенного способа ее решения, так как каждый набор данных имеет свои особенности. Но в то же время есть несколько подходов, которые помогают добиться успеха. Я хочу рассказать про один из таких подходов — автоенкодеры.

Читать дальше →


Как сжать модель fastText в 100 раз

Модель fastText — одно из самых эффективных векторных представлений слов для русского языка. Однако её прикладная польза страдает из-за внушительных (несколько гигабайт) размеров модели. В этой статье мы показываем, как можно уменьшить модель fastText с 2.7 гигабайт до 28 мегабайт, не слишком потеряв в её качестве (3-4%). Спойлер: квантизация и отбор признаков работают хорошо, а матричные разложения — не очень. Также мы публикуем пакет на Python для этого сжатия и пример компактной модели для русских слов.

Читать дальше →