Посты с тэгом machinelearning


[Перевод] Топ 6 библиотек Python для визуализации: какую и когда лучше использовать?

Если вы только собираетесь начать работу с визуализацией в Python, количество библиотек и решений вас определенно поразит:

- Matplotlib

- Seaborn

- Plotly

- Bokeh

- Altair

- Folium

Но какую из этих библиотек лучше выбрать для визуализации DataFrame? Некоторые библиотеки имеют больше преимуществ для использования в некоторых конкретных случаях. В этой статье приведены плюсы и минусы каждой из них. Прочитав эту статью, вы будете разбираться в функционале каждой библиотеки и будете способны подбирать для ваших потребностей оптимальную.

Читать далее


Чем грозит Москве «британский» штамм COVID-19? Отвечаем с помощью Python и дифуров

Всем привет! Меня зовут Борис, я выпускник программы “Науки о данных” ФКН ВШЭ, работаю ML Инженером и преподаю в ОТУС на курсах ML Professional, DL Basic, DL Computer Vision.

В первых числах января 2021 я узнал про “британский” штамм коронавируса, прогнозы о новой волне в США. Я подумал: “аналитик данных я или кто”? Мне захотелось забить гвоздик своим микроскопом и узнать, вызовет ли “британский” штамм волну заражений в Москве и стоит ли покупать авиабилеты на лето.

Выглядело как приключение на две недели, но превратилось в исследование на три месяца. В процессе я выяснил, что хороших материалов по созданию эпидемиологических моделей практически нет. Банально авторы статей по моделированию COVID-19 в топовых журналах даже не делают train-test split.

Я предлагаю туториал на основе своего исследования. В нём я постарался передать все важные детали, которые сэкономили бы



[Перевод] 12 примеров улучшения кода с помощью @dataclass

Мы добавляем алгоритмы кластеризации с помощью пакетов scikit-learn, Keras и других в пакет Photonai. На 12 примерах мы покажем, как @dataclass улучшает код на Python. Для этого мы используем код из пакета Photonai для Machine Learning.

Читать далее


[Перевод] Python Gateway в InterSystems IRIS

Эта статья посвящена Python Gateway — комьюнити-проекту с открытым исходным кодом для платформы данных InterSystems IRIS. Этот проект
позволяет оркестрировать любые алгоритмы машинного обучения, созданные на языке Python (основная среда для многих Data Scientists), использовать многочисленные готовые библиотеки для быстрого создания адаптивных, роботизированных аналитических AI/ML-решений на платформе InterSystems IRIS. В этой статье я покажу как InterSystems IRIS может оркестровать процессы на языке Python, эффективно осуществлять двустороннюю передачу данных и создавать интеллектуальные бизнес-процессы.

Читать дальше →


Машинное обучение на Python-е с интерактивными Jupyter демонстрациями


Здравствуйте, Читатели!


Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.

Читать дальше →