Посты с тэгом машинное обучение


Книга «Знакомство с PyTorch: глубокое обучение при обработке естественного языка»

Привет, Хаброжители! Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate. Эта книга поможет вам изучить PyTorch — библиотеку глубокого обучения для языка Python — один из ведущих инструментов для дата-сайентистов и разработчиков ПО, занимающихся NLP. Делип Рао и Брайан Макмахан введут вас в курс дел с NLP и алгоритмами глубокого обучения. И покажут, как PyTorch позволяет реализовать приложения, использующие анализ текста.

В этой книге • Вычислительные графы и парадигма обучения с учителем. • Основы оптимизированной библиотеки PyTorch для работы с тензорами. • Обзор традиционных понятий и методов NLP. • Упреждающие нейронные сети (многослойный перцептрон и


Если у Вас нет Питона, но есть Керас-модель и Джава

Всем привет!
В построении ML-моделей Python сегодня занимает лидирующее положение и пользуется широкой популярностью сообщества Data Science специалистов [1].
Также, как и большинство разработчиков, Python привлекает нас своей простотой и лаконичным синтаксисом. Мы используем его для решения задач машинного обучения при помощи искусственных нейронных сетей. Однако, на практике, язык продуктовой разработки не всегда Python и это требует от нас решения дополнительных интеграционных задач.
В этой статье расскажу о тех решениях, к которым мы пришли, когда нам потребовалось связать Keras-модель языка Python с Java.

Чему уделим внимание:

  • Особенностям связки Keras модели и Java;
  • Подготовке к работе с фрейворком DeepLearning4j (сокращенно DL4J);
  • Импорту Keras-модели в DL4J (осторожно, раздел содержит множественные


[Перевод] Зачем использовать `python -m pip`

И снова здравствуйте. В преддверии старта нового потока по курсу «Machine Learning», хотим поделиться переводом статьи, которая имеет довольно косвенное отношение к ML, но наверняка будет полезна подписчикам нашего блога.





Мариатта — разработчик из Канады, спросила в Твиттере о python -m pip, попросив рассказать об этой идиоме и объяснить принцип ее работы.

Недавно я узнала, что нужно писать python -m pip вместо обычного pip install, но теперь я не могу вспомнить от кого я это услышала. Наверное, от @brettsky или @zooba. У кого-нибудь из вас есть пост в блоге, чтобы я могла поделиться им с читателями?
— Мариатта (@mariatta


Решаем уравнение простой линейной регрессии

В статье рассматривается несколько способов определения математического уравнения линии простой (парной) регрессии.

Все рассматриваемые здесь способы решения уравнения основаны на методе наименьших квадратов. Обозначим способы следующим образом:

  • Аналитическое решение
  • Градиентный спуск
  • Стохастический градиентный спуск

Для каждого из способов решения уравнения прямой, в статье приведены различные функции, которые в основном делятся на те, которые написаны без использования библиотеки NumPy и те, которые для проведения расчетов применяют NumPy. Считается, что умелое использование NumPy позволит сократить затраты на вычисления.

Весь код, приведенный в статье, написан на языке python 2.7 с использованием Jupyter Notebook. Исходный код и файл с данными выборки выложен на Гитхабе

Ста


Как мы используем цепи Маркова в оценке решений и поиске багов. Со скриптом на Python



Нам важно понимать, что с происходит с нашими студентами во время обучения, и как эти события влияют на результат, поэтому мы выстраиваем Customer Journey Map — карту клиентского опыта. Ведь процесс обучения — не нечто непрерывное и цельное, это цепочка взаимосвязанных событий и действий студента, причем эти действия могут сильно отличаться у разных учеников. Вот он прошел урок: что он сделает дальше? Пойдет в домашнее задание? Запустит мобильное приложение? Изменит курс, попросит сменить учителя? Сразу зайдет в следующий урок? Или просто уйдет разочарованным? Можно ли, проанализировав эту карту, выявить закономерности, приводящие к успешному окончанию курса или наоборот, «отваливанию» студента?

Обычно для выстраивания CJM используют специализированные, весьма дорогие инструменты с закрытым кодом. Но нам хотелось придумать что-то простое, требующее минимальных усилий и по возможн


[Перевод] Превращаем скрипты в красивые инструменты для машинного обучения

Создаём семантический поисковик с машинным обучением в реальном времени за 300 строк Python кода.

Мой опыт подсказывает, что любой более или менее сложный проект по машинному обучению рано или поздно превращается в набор сложных неподдерживаемых внутренних инструментов. Эти инструменты, как правило, мешанина из скриптов Jupyter Notebooks и Flask, которые сложно развёртывать и интегрировать с решениями типа GPU сессий Tensorflow.


Впервые я столкнулся с этим в университете Карнеги, затем в Беркли, в Google X, и, наконец, при создании автономных роботов в Zoox. Зарождались инструменты в виде небольших Jupyter notebooks: утилита калибровки сенсора, сервис моделирования, приложение LIDAR, утилита для сценариев и т.д.


С ростом важности инструментов появлялись менеджеры. Бюрократия росла. Требования повышались. Маленькие прое



[Перевод] 3 продвинутых функции на Python для анализа данных

Всего два дня остается до старта новой группы самого хардкорного курса от OTUS — «Разработчик Python». В преддверии старта курса делимся с вами еще одним полезным материалом.




Python – это весело. Несложно заново изобрести какую-либо встроенную функцию, о существовании которой вы не знаете, но зачем? Сегодня мы познакомимся с тремя функциями, которые теперь я использую практически каждый день, но о которых не знал большую часть своей карьеры в области анализа данных. Читать дальше →


Руководство для начинающих по машинному обучению и структуре Data Science

Для всех, кому интересна тематика работы с данными, машинного обучения и искусственного интеллекта и для тех, кто только начинает свой путь в изучении — этот пост для вас. Все библиотеки ниже бесплатны, и большинство из них с открытым исходным кодом и выложены на GitHub. Используйте с любовью и делитесь с коллегами.



Machine Learning


  • Scikit-learn — машинное обучение на Python;
  • Shogun — инструментарий машинного обучения;
  • xLearn — высокопроизводительный, простой и масштабируемый пакет для машинного обучения;
  • Reproducible Experiment Platform (REP) — набор инструментов машинного обучения;


Раскрашиваем ч/б фото с помощью Python

Привет Хабр.

Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.

Результат работы на фото.



Для тех кому интересно, принцип работы, исходники и примеры под катом.
Читать дальше →



[Перевод] Глупая причина, по которой не работает ваше хитрое приложение машинного зрения: ориентация в EXIF

Я много писал о проектах компьютерного зрения и машинного обучения, таких как системы распознавания объектов и проекты распознавания лиц. У меня также есть опенсорсная библиотека распознавания лиц на Python, которая как-то вошла в топ-10 самых популярных библиотек машинного обучения на Github. Всё это привело к тому, что новички в Python и машинном зрении задают мне много вопросов.



По опыту, есть одна конкретная техническая проблема, которая чаще всего