Посты с тэгом математика


Решаем уравнение простой линейной регрессии

В статье рассматривается несколько способов определения математического уравнения линии простой (парной) регрессии.

Все рассматриваемые здесь способы решения уравнения основаны на методе наименьших квадратов. Обозначим способы следующим образом:

  • Аналитическое решение
  • Градиентный спуск
  • Стохастический градиентный спуск

Для каждого из способов решения уравнения прямой, в статье приведены различные функции, которые в основном делятся на те, которые написаны без использования библиотеки NumPy и те, которые для проведения расчетов применяют NumPy. Считается, что умелое использование NumPy позволит сократить затраты на вычисления.

Весь код, приведенный в статье, написан на языке python 2.7 с использованием Jupyter Notebook. Исходный код и файл с данными выборки выложен на Гитхабе

Ста


[Из песочницы] Сплайны в 3d графике, максимально автоматизированный вариант

С месяц назад начал учить Python по книге Доусона и очнулся уже глубоко в процессе написания своей игры под pygame. ТЗ было таково, что наиболее перспективным показалось сделать игру с псевдо-трехмерной графикой, запихнув в спрайты сохраненные поверхности 3d-сплайнов. О последних и напишу.

Итак, имеются полигоны (проще всего работать с четырехугольниками), на которые мы хотим натянуть кубические поверхности так, чтобы они стыковались достаточно плавно — эти поверхности и есть сплайны.


Читать дальше →



Генератор простых арифметических примеров для чайников и не только

Привет!
В этой «статье», а вернее сказать очерке, покажу очень простой способ развлечься зная самые основы latex и python.


Читать дальше →



Элементарная симуляция кастомного физического взаимодействия на python + matplotlib

Привет!

Тут мы опишем работу некоторого поля а затем сделаем пару красивых фичей (тут все ОЧЕНЬ просто).



Что будет в этой статье.

Общий случай:

  1. Опишем базу, а именно работу с векторами (велосипед для тех, у кого нет под рукой numpy)
  2. Опишем материальную точку и поле взаимодействия

Частный случай (на основе общего):

  1. Сделаем визуализацию векторного поля напряженности электромагнитного поля (первая и третья картинки)
  2. Сделаем визуализацию движения частиц в электромагнитном поле

Встретимся под катом!
Читать дальше →


[Из песочницы] Пишем простую нейронную сеть с использованием математики и Numpy


Зачем очередная статья про то, как писать нейронные сети с нуля? Увы, я не смог найти статьи, где были бы описаны теория и код с нуля до полностью работающей модели. Сразу предупреждаю, что тут будет много математики. Я предполагаю, что читатель знаком с основами линейной алгебры, частными производными и хотя бы частично, с теорией вероятностей, а также Python и Numpy. Будем разбираться с полносвязной нейронной сетью и MNIST.
Читать дальше →


Курс лекций «Основы цифровой обработки сигналов»

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.


Читать дальше →



Вейвлет-анализ.Часть 3

Введение


При проведении CWT анализа средствами библиотеки PyWavelets (бесплатное программное обеспечение с открытым исходным кодом, выпущенное по лицензии MIT) возникают проблемы с визуализацией результата. Предложенная разработчиками тестовая программа по визуализации приведена в следующем листинге:
Листинг
 import pywt
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(-1, 1, 200, endpoint=False)
sig  = np.cos(2 * np.pi * 7 * t) + np.real(np.exp(-7*(t-0.4)**2)*np.exp(1j*2*np.pi*2*(t-0.4)))
widths = np.arange(1, 31)
cwtmatr, freqs = pywt.cwt(sig, widths, 'cmor1-1.5')
plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
             vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())  # doctest: +SKIP
plt.show() # doctest: +SKIP

При работе с комплексными вейвлетами, например с 'cmor1-1.5', программа выд


Математические неопределенности на примере Python

Всем привет!
Мы очень часто пользуемся привычными числами в наших любимых языках программирования.
Привычные это 1, -1.5, pi или даже комплексные. А вот NaN, +Inf, -Inf используется нами гораздо реже.
Примечание:
В статье я использую элементарные функции Python версии 3.6.8, но многое будет актуально и для других языков, например для JS.
Читать дальше →



Математические неопределенности на примере Python

Всем привет! Мы очень часто пользуемся привычными числами в наших любимых языках программирования. Привычные это 1, -1.5, pi или даже комплексные. А вот NaN, +Inf, -Inf используется нами гораздо реже.

Примечание:

В статье я использую элементарные функции Python версии 3.6.8, но многое будет актуально и для других языков, например для JS.
Читать дальше →



SciPy, оптимизация с условиями



SciPy (произносится как сай пай) — это основанный на numpy математический пакет, включающий в себя также библиотеки на C и Fortran. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных, как MATLAB, IDL, Octave, R или SciLab.


В этой статье рассмотрим основные приемы математического программирования — решения задач условной оптимизации для скалярной функции нескольких переменных с помощью пакета scipy.optimize. Алгоритмы безусловной оптимизации уже рассмотрены в прошлой статье. Более подробную и актуальную справку по функциям scipy всегда можно получить с помощью команды help(), Shift+Tab или в официальной документации.

Читать дальше →