Посты с тэгом natural language processing


Генерация текста на русском по шаблонам

Когда я только начинал работать над своей текстовой игрой, решил, что одной из её главных фич должны стать красивые художественные описания действий героев. Отчасти хотел «сэкономить», поскольку в графику не умел. Экономии не получилось, зато получилась Python библиотека (github, pypi) для генерации текстов с учётом зависимости слов и их грамматических особенностей.

Например, из шаблона:

[Hero] [проходил|hero] мимо неприметного двора и вдруг [заметил|hero] играющих детей. Они бегали с деревянными мечами, посохами и масками чудовищ. Внезапно один из играющих остановился, выставил [игрушечный|hero.weapon|вн] [hero.weapon|вн], выкрикнул: «[Я|hero] [великий|hero] [Hero]! Получай!» — и бросился на «бестий». Они упали оземь, задрыгали руками-ногами, а после встали, сняли маски и засмеялись. [Хмыкнул|hero] и [сам|hero] [Hero],


[Из песочницы] Анализ эмоциональной окраски отзывов с Кинопоиска

Вступление


Обработка естественного языка (NLP) является популярной и важной областью машинного обучения. В данном хабре я опишу свой первый проект, связанный с анализом эмоциональной окраски кино отзывов, написанный на Python. Задача сентиментного анализа является довольно распространенной среди тех, кто желает освоить базовые концепции NLP, и может стать аналогом 'Hello world' в этой области.

В этой статье мы пройдем все основные этапы процесса Data Science: от создания собственного датасета, его обработки и извлечения признаков с помощью библиотеки NLTK и наконец обучения и настройки модели с помощью scikit-learn. Сама задача состоит в классификации отзывов на три класса: негативные, нейтральные и позитивные.
Читать дальше →


Создание простого разговорного чатбота в python

Как выдумаете, сложно ли написать на Python собственного чатбота, способного поддержать беседу? Оказалось, очень легко, если найти хороший набор данных. Причём это можно сделать даже без нейросетей, хотя немного математической магии всё-таки понадобится.

Идти будем маленькими шагами: сначала вспомним, как загружать данные в Python, затем научимся считать слова, постепенно подключим линейную алгебру и теорвер, и под конец сделаем из получившегося болтательного алгоритма бота для Телеграм.

Этот туториал подойдёт тем, кто уже немножко трогал пальцем Python, но не особо знаком с машинным обучением. Я намеренно не пользовался никакими nlp-шными библиотеками, чтобы показать, что нечто работающее можно собрать и на голом sklearn.



Читать дальше →



Как решить старую задачу с помощью ML на Python и .Net


Бывает, что некоторые задачи преследуют тебя много лет. Для меня такой задачей стала склейка предложений текстов, в которых жестко забит переход на новую строку, а часто еще и перенос слов. На практике, это извлеченный из PDF или с помощью OCR текст. Часто можно было встретить такие тексты на сайтах он-лайн библиотек, в архивах старых документов, которые редактировались еще DOS-редакторами. И такое форматирование очень мешает затем правильной разбивке на предложения (а с переносами — и на токены) для последующей NLP-обработки. Да и банально показать такой документ в поисковой выдаче — будет некрасиво.


Решал я эту задачу несколько раз — на Delphi, C#. Тогда это был жесткий алгоритм, где руками прописывал, например, какая может быть ширина текста, чтобы этот текст считался отформатированным "по-старому". Не всегда это срабатывало идеально, но в общем, хватало.



Пример работы с естественными языками (Natural Language Processing) на Python

Хорошая статья с примерами и полезными ссылками. Традиционно NLP задачи реализовывались на Java, но Python приобретает все большую популярность в этой области.



Пример работы с естественными языками (Natural Language Processing) на Python

Хорошая статья с примерами и полезными ссылками. Традиционно NLP задачи реализовывались на Java, но Python приобретает все большую популярность в этой области.



pymorphy2

В далеком 2009 году на хабре уже была статья "Кузявые ли бутявки.." про pymorphy — морфологический анализатор для русского языка на Python (штуковину, которая умеет склонять слова, сообщать информацию о части речи, падеже и т.д.)

В 2012м я начал потихоньку делать pymorphy2 (github, bitbucket) — думаю, самое время представить эту библиотеку тут: pymorphy2 может работать в сотни раз быстрее, чем pymorphy (втч без использования C/C++ расширений) и при этом требовать меньше памяти; там лучше словари, лучше качество разбора, лучше поддержка буквы ё, проще установка и более «честный» API. Из негатива — не все возможности pymorphy сейчас реализованы в pymorphy2.

Эта статья о том, как pymorphy2 создавался (иногда с довольно скучными техническими подробностями), и сколько глупостей я при этом наделал; если хочется



[Из песочницы] Обработка естественного языка. Полезные инструменты

Последнее время на Хабре зачастили статьи про обработку естественного языка.
И так уж совпало, что последнее время я работаю в этой области.
Был очень хорошо освещен sentiment analysis, и теггер частей речи pymorphy.
Но мне хотелось бы рассказать, какие средства для NLP использовал я, и что я нашел нового, чего здесь еще не было
Читать дальше →



Обучаем компьютер чувствам (sentiment analysis по-русски)



Sentiment analysis (по-русски, анализ тональности) — это область компьютерной лингвистики, которая занимается изучением мнений и эмоций в текстовых документах. Недавно на хабре появилась статья про использование машинного обучения для анализа тональности, однако, она была настолько плохо составлена, что я решил написать свою версию. Итак, в этой статье я постараюсь доступно объяснить, что такое анализ тональности, и как реализовать подобную систему для русского языка.
Читать дальше →


Python / Определение части речи слов в русском тексте (POS-tagging) на Python 3

Пусть, дано предложение “Съешьте еще этих мягких французских булок, да выпейте чаю.”, в котором нам нужно определить часть речи для каждого слова:

[('съешьте', 'глаг.'), ('еще', 'нареч.'), ('этих', 'местоим. прил.'), ('мягких', 'прил.'), ('французских', 'прил.'), ('булок', 'сущ.'), ('да', 'союз'), ('выпейте', 'глаг.'), ('чаю', 'сущ.')]

Зачем это нужно? Например, для автоматического определения тегов для блог-поста (для отбора существительных). Морфологическая разметка является одним из первых этапов компьютерного анализа текста.