Посты с тэгом нейронные сети


Если у Вас нет Питона, но есть Керас-модель и Джава

Всем привет!
В построении ML-моделей Python сегодня занимает лидирующее положение и пользуется широкой популярностью сообщества Data Science специалистов [1].
Также, как и большинство разработчиков, Python привлекает нас своей простотой и лаконичным синтаксисом. Мы используем его для решения задач машинного обучения при помощи искусственных нейронных сетей. Однако, на практике, язык продуктовой разработки не всегда Python и это требует от нас решения дополнительных интеграционных задач.
В этой статье расскажу о тех решениях, к которым мы пришли, когда нам потребовалось связать Keras-модель языка Python с Java.

Чему уделим внимание:

  • Особенностям связки Keras модели и Java;
  • Подготовке к работе с фрейворком DeepLearning4j (сокращенно DL4J);
  • Импорту Keras-модели в DL4J (осторожно, раздел содержит множественные


Раскрашиваем ч/б фото с помощью Python

Привет Хабр.

Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.

Результат работы на фото.



Для тех кому интересно, принцип работы, исходники и примеры под катом.
Читать дальше →



Python + Keras + LSTM: делаем переводчик текстов за полчаса

Привет, Хабр.

В предыдущей части я рассматривал создание несложной распознавалки текста, основанной на нейронной сети. Сегодня мы применим аналогичный подход, и напишем автоматический переводчик текстов с английского на немецкий.



Для тех, кому интересно как это работает, подробности под катом.
Читать дальше →



Python + OpenCV + Keras: делаем распознавалку текста за полчаса

Привет Хабр.

После экспериментов с многим известной базой из 60000 рукописных цифр MNIST возник логичный вопрос, есть ли что-то похожее, но с поддержкой не только цифр, но и букв. Как оказалось, есть, и называется такая база, как можно догадаться, Extended MNIST (EMNIST).

Если кому интересно, как с помощью этой базы можно сделать несложную распознавалку текста, добро пожаловать под кат.


Читать дальше →



Как обойти капчу: нейросеть на Tensorflow,Keras,python v числовая зашумленная капча

Тема капч не нова, в том числе для Хабра. Тем не менее, алгоритмы капч меняются, как и алгоритмы их решения. Поэтому, предлагается помянуть старое и прооперировать следующий вариант капчи:

попутно понять работу простой нейросети на практике, а также улучшить ее результаты.

Читать дальше →



[Из песочницы] Пишем простую нейронную сеть с использованием математики и Numpy


Зачем очередная статья про то, как писать нейронные сети с нуля? Увы, я не смог найти статьи, где были бы описаны теория и код с нуля до полностью работающей модели. Сразу предупреждаю, что тут будет много математики. Я предполагаю, что читатель знаком с основами линейной алгебры, частными производными и хотя бы частично, с теорией вероятностей, а также Python и Numpy. Будем разбираться с полносвязной нейронной сетью и MNIST.
Читать дальше →


Определяем породу собаки: полный цикл разработки, от нейросети на Питоне до приложения на Google Play

Прогресс в области нейросетей вообще и распознавания образов в частности, привел к тому, что может показаться, будто создание нейросетевого приложения для работы с изображениями — это рутинная задача. В некотором смысле, так и есть — если вам пришла в голову идея, связанныя с распознаватием образов, не сомневайтесь, что кто-то уже что-то подобное написал. Все, что от вас требуется, это найти в Гугле соответствующий кусок кода и «скомпилировать» его у автора.

Однако, все еще есть многочисленные детали, делающие задачу не столько неразрешимой, сколько… нудной, я бы сказал. Отнимающей слишком много времени, особенно если вы — новичок, которому нужно руководство, step-by-step, проект, выполненный прямо на ваших глазах, и выполненный от начала и до конца. Без обычных в таких случаях «пропустим эту очевидную часть» отговорок.

В этой статье мы рассмотрим задачу создания определителя пород собак (Dog Breed Identifier): создадим и обучим нейросеть, а затем портируем ее на



Реализация алгоритма Левенберга-Марквардта для оптимизации нейронных сетей на TensorFlow

Это tutorial по библиотеке TensorFlow. Рассмотрим её немного глубже, чем в статьях про распознавание рукописных цифр. Это tutorial по методам оптимизации. Совсем без математики здесь не обойтись. Ничего страшного, если вы её совершенно забыли. Вспомним. Не будет никаких формальных доказательств и сложных выводов, только необходимый минимум для интуитивного понимания. Для начала небольшая предыстория о том, чем этот алгоритм может быть полезен при оптимизации нейронной сети.




Полгода назад друг попросил показать, как на Python сделать нейросеть. Его компания выпускает приборы для геофизических измерений. Несколько различных зондов в процессе бурения измеряют набор сигналов, связаных с параметрами окружающей скважину среды. В некоторых сложных случаях точно вычислить параметры среды по сигналам долго даже на мощном компьютере, а необходимо интерпретировать результаты измерений в



[Перевод] Что требуется сделать в языке Java для полноценной поддержки машинного обучения

Здравствуйте, коллеги!

Из последних известий по нашим планируемым новинкам из области ML/DL:

Нишант Шакла, "Машинное обучение с Tensorflow" — книга в верстке, ожидается в магазинах в январе

Делип Рао, Брайан Макмахан, "Обработка естественного языка на PyTorch" — контракт подписан, планируем приступать к переводу в январе.

В данном контексте мы хотели в очередной раз вернуться к болезненной теме — слабой проработке темы ML/DL в языке Java. Из-за явной незрелости этих решений и алгоритмов на языке Java мы когда-то приняли решение отказаться от книги Гибсона и Паттерсона по DL4J,



Машинное обучение: прогнозируем цены акций на фондовом рынке

Переводчик Полина Кабирова специально для «Нетологии», адаптировала статью инженера Кембриджского университета Вивека Паланиаппана о том, как с помощью нейронных сетей создать модель, способную предсказывать цены акций на фондовой бирже.

Машинное и глубокое обучение стали новой эффективной стратегией, которую для увеличения доходов используют многие инвестиционные фонды. В статье я объясню, как нейронные сети помогают спрогнозировать ситуацию на фондовом рынке — например, цену на акции (или индекс). В основе текста мой проект, написанный на языке Python. Полный код и гайд по программе можно найти на GitHub. Другие статьи по теме читайте в блоге на Medium.