Посты с тэгом numpy


Курс лекций «Основы цифровой обработки сигналов»

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.


Читать дальше →



[Перевод] Почему каждый Data Scientist должен знать Dask

Здравствуйте, коллеги!

Возможно, название сегодняшней публикации лучше смотрелось бы с вопросительным знаком — сложно сказать. В любом случае, сегодня мы хотим предложить вам краткий экскурс, который познакомит вас с библиотекой Dask, предназначенной для распараллеливания задач на Python. Надеемся в дальнейшем вернуться к этой теме более основательно.


Снимок взят по адресу
Читать дальше →



[Перевод] Как Netflix использует Питон



Поскольку многие из нас готовятся к конференции PyCon, мы хотели немного рассказать, как Python используется в Netflix. Мы применяем Python на всём жизненном цикле: от принятия решения, какие сериалы финансировать, и заканчивая работой CDN для отгрузки видео 148 миллионам пользователей. Мы вносим свой вклад во многие пакеты Python с открытым исходным кодом, некоторые из которых упомянуты ниже. Если что-то вас интересует, посмотрите наш сайт вакансий или ищите нас на PyCon.
Читать дальше →


Python и DataScience: изучаем возможности универсальной библиотеки Numpy



От переводчика: это перевод материала Ракшита Васудева, давно и плотно изучающего DataScience и применение в ней языка Python. Автор рассказывает о мощной библиотеке Numpy, который позволяет реализовать многие возможности машинного обучения и работы с большими данными.

Numpy — математическая библиотека для Python. Она позволяет выполнять разного рода вычисления эффективно и быстро. Она значительно расширяет функциональность Python благодаря специальным решениям, которые в ней применяются. В этой статье рассказывается о базовых возможностях Numpy, и это только первая часть; чуть позже будут опубликованы и другие. Статья для тех, кто только начинает изучать Numpy, вступая в дивный мир математики в Python.
Читать дальше →


NumPy в Python. Часть 4

Предисловие переводчика


Всем здравствуйте, вот мы и подошли к конечной части. Приятного чтения!
Навигация:


Математика многочленов


NumPy предоставляет методы для работы с полиномами. Передавая список корней, можно получить коэффициенты уравнения:

>>> np.poly([-1, 1, 1, 10])
array([ 1, -11,   9,  11, -10])

Здесь, массив возвращает коэффициенты соответствующие уравнению: . Читать дальше →


NumPy в Python. Часть 3

Предисловие переводчика


И снова здравствуйте! Продолжаем наш цикл статей по переводу мана о numpy. Приятного чтения.


Операторы сравнения и тестирование значений


Булево сравнение может быть использовано для поэлементного сравнения массивов одинаковых длин. Возвращаемое значение это массив булевых True/False значений:

>>> a = np.array([1, 3, 0], float)
>>> b = np.array([0, 3, 2], float)
>>> a > b
array([ True, False, False], dtype=bool)
>>> a == b
array([False,  True, False], dtype=bool)
>>> a <= b
array([False,  True,  True], dtype=bool)
Читать дальше →


NumPy в Python. Часть 2

Предисловие переводчика


Продолжаем перевод статьи о numpy в python. Для тех кто не читал первую часть, сюда: Часть 1. А всем остальным — приятного чтения.

Другие пути создания массивов


Функция arange аналогична функции range, но возвращает массив:

>>> np.arange(5, dtype=float)
array([ 0.,  1.,  2.,  3.,  4.])
>>> np.arange(1, 6, 2, dtype=int)
array([1, 3, 5])

Функции zeros и ones создают новые массивы с установленной размерностью, заполненные этими значениями. Это, наверное, самые простые в использовании функции для создания массивов:

>>> np.ones((2,3), dtype=float)
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>> np.zeros(7, dtype=int)
array([0, 0, 0, 0, 0, 0, 0])
Читать дальше →


[Из песочницы] Анализ данных с использованием Python


Язык программирования Python в последнее время все чаще используется для анализа данных, как в науке, так и коммерческой сфере. Этому способствует простота языка, а также большое разнообразие открытых библиотек.


В этой статье разберем простой пример исследования и классификации данных с использованием некоторых библиотек на Python. Для исследования, нам понадобится выбрать интересующий нас набор данных (DataSet). Разнообразные наборы Dataset'ы можно скачать с сайта. DataSet обычно представляет собой файл с таблицей в формате JSON или CSV. Для демонстрации возможностей исследуем простой набор данных с информацией о наблюдениях НЛО. Наша цель будет не получить исчерпывающие ответы на главный вопрос жизни, вселенной и всего такого, а показа



[Из песочницы] NumPy в Python. Часть 1

Предисловие переводчика


Доброго времени суток, Хабр. Запускаю цикл статей, которые являются переводом небольшого мана по numpy, ссылочка. Приятного чтения.

Введение


NumPy это open-source модуль для python, который предоставляет общие математические и числовые операции в виде пре-скомпилированных, быстрых функций. Они объединяются в высокоуровневые пакеты. Они обеспечивают функционал, который можно сравнить с функционалом MatLab. NumPy (Numeric Python) предоставляет базовые методы для манипуляции с большими массивами и матрицами. SciPy (Scientific Python) расширяет функционал numpy огромной коллекцией полезных алгоритмов, таких как минимизация, преобразование Фурье, регрессия, и другие прикладные математические техники.
Читать дальше →


Мульти-классификация Google-запросов с использованием нейросети на Python

Прошло уже достаточно времени с момента публикации моей первой статьи на тему обработки естественного языка. Я продолжал активно исследовать данную тему, каждый день открывая для себя что-то новое.
Сегодня я бы хотел поговорить об одном из способов классификации поисковых запросов, по отдельным категориям с помощью нейронной сети на Keras. Предметной областью запросов была выбрана сфера автомобилей.
За основу был взят датасет размером ~32000 поисковых запросов, размеченных по 14ти классам: Автоистория, Автострахование, ВУ (водительское удостоверение), Жалобы, Запись в ГИБДД, Запись в МАДИ, Запись на медкомиссию, Нарушения и штрафы, Обращения в МАДИ и АМПП, ПТС, Регистрация, Статус регистрации, Такси, Эвакуация. Читать дальше →