Посты с тэгом open source


DeepPavlov для разработчиков: #2 настройка и деплоймент

Всем привет! В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.

Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.




[Перевод] 34 open source библиотеки Python (2019)



Мы просмотрели и сравнили 10 000 open source библиотек для Python и выбрали 34 самые полезные.



Мы сгруппировали эти библиотеки в 8 категорий.
Читать дальше →


9 лучших опенсорс находок за октябрь 2019

Доброго ноября, дамы и господа. Подготовил для вас подборку самых интересных находок из опенсорса за октябрь 2019.


За полным списком новых полезных инструментов, статей и докладов можно обратиться в мой телеграм канал @OpensourceFindings (по ссылке зеркало, если не открывается оригинал).


В сегодняшнем выпуске.
Технологии внутри: Rust, Swift, TypeScript, JavaScript, Go, Scala, Python.
Тематика: веб и мобильная разработка, визуализация данных, инструменты разработчика, документация.


Прошлый выпуск.

Читать дальше →


[Перевод] Превращаем скрипты в красивые инструменты для машинного обучения

Создаём семантический поисковик с машинным обучением в реальном времени за 300 строк Python кода.

Мой опыт подсказывает, что любой более или менее сложный проект по машинному обучению рано или поздно превращается в набор сложных неподдерживаемых внутренних инструментов. Эти инструменты, как правило, мешанина из скриптов Jupyter Notebooks и Flask, которые сложно развёртывать и интегрировать с решениями типа GPU сессий Tensorflow.


Впервые я столкнулся с этим в университете Карнеги, затем в Беркли, в Google X, и, наконец, при создании автономных роботов в Zoox. Зарождались инструменты в виде небольших Jupyter notebooks: утилита калибровки сенсора, сервис моделирования, приложение LIDAR, утилита для сценариев и т.д.


С ростом важности инструментов появлялись менеджеры. Бюрократия росла. Требования повышались. Маленькие прое



Генерация текста на русском по шаблонам

Когда я только начинал работать над своей текстовой игрой, решил, что одной из её главных фич должны стать красивые художественные описания действий героев. Отчасти хотел «сэкономить», поскольку в графику не умел. Экономии не получилось, зато получилась Python библиотека (github, pypi) для генерации текстов с учётом зависимости слов и их грамматических особенностей.

Например, из шаблона:

[Hero] [проходил|hero] мимо неприметного двора и вдруг [заметил|hero] играющих детей. Они бегали с деревянными мечами, посохами и масками чудовищ. Внезапно один из играющих остановился, выставил [игрушечный|hero.weapon|вн] [hero.weapon|вн], выкрикнул: «[Я|hero] [великий|hero] [Hero]! Получай!» — и бросился на «бестий». Они упали оземь, задрыгали руками-ногами, а после встали, сняли маски и засмеялись. [Хмыкнул|hero] и [сам|hero] [Hero],


bear_hug: игры в ASCII-арте на Python3.6+



Для своих игр в ASCII-арте я написал библиотеку bear_hug с очередью событий, коллекцией виджетов, поддержкой ECS и прочими полезными мелочами. В этой статье мы посмотрим, как с её помощью сделать минимальную работающую игру.

Читать дальше →


[Из песочницы] Феерический screensaver для Kodi


Назначение хранителя экрана для «Kodi»


Проект предназначен для создания «Феерического» хранителя экрана с минимальным количеством исходного кода на языке Python. Проект является простейшим плагином для мультимедиа центра Kodi.

Проект показывает как можно создать очень красивый хранитель экрана целиком опираясь на работу «OpenSource» сообщества. Проект интеграционный, это пример написания двух независимых компонентов, каждый из которых занимает порядка 80 строчек кода. Первый компонент — генератор контента, shell скрипт, второй компонент — плагин для мультимедиа центра Kodi, отвечает за отображение контента.

Ну и напоследок если вы программист и используете систему контроля версий Git, то вы можете визуализировать вашу работу, записать ее в видео файл и наслаждаться полученным результатом на экране телевизора или компьютера, откинувшись


«САПР для всех, даром, и пусть никто не уйдет…» или первые шаги в программировании FreeCAD на Python

Возможно, вам уже ранее попадались мои заметки по первым шагам в программировании САПР на примере NanoCAD.

Надо отметить, что для человека не умеющего программировать и знающего САПР на уровне «электронного кульмана» это было удивительное приключение. Однако, NanoCAD это все же в первую очередь коммерческий продукт. Его бесплатная версия не обновлялась, уже около шести лет и порядком устарела в плане возможностей для разработки.

А ведь так хотелось, чтобы как в одной замечательной повести: «Счастье для всех, даром, и пусть никто не уйдёт обиженный!» . Поэтому было принято решение, внять совету боевого товарища DrZugrik и установить себе FreeCAD.

Итак, по горячим следам пишу для вас материал, всего за один день я узнал, как подружить эту САПР с Anaconda, написал на Python простенький скрипт, который рисует квадратик с текстом и протестировал его на



Курс лекций «Основы цифровой обработки сигналов»

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.


Читать дальше →



Автоматизация импортов в Python

До После
import math
import os.path

import requests

# 100500 other imports

print(math.pi)
print(os.path.join('my', 'path'))
print(requests.get)
import smart_imports

smart_imports.all()

print(math.pi)
print(os_path.join('my', 'path'))
print(requests.get)
Так получилось, что аж с 2012 года я разрабатываю open source браузерку, являясь единственным программистом. На Python само собой. Браузерка — штука не самая простая, сейчас в основной части проекта больше 1000 модулей и более 120 000 строк кода на Python. В сумме же с проектами-спутниками будет раза в полтора больше.

В какой-то момент мне надоело возиться с этажами импортов в начале каждого файла и я решил разобраться с этой проблемой раз и навсегда. Так родилась библиотека smart_imports (github,