Посты с тэгом open source


[Перевод] Как создать свой первый open source проект на Python (17 шагов)

Каждый разработчик ПО должен знать как создать библиотеку с нуля. В процессе работы Вы можете многому научиться. Только не забудьте запастись временем и терпением.

Может показаться, что создать библиотеку с открытым исходным кодом сложно, но Вам не нужно быть потрепанным жизнью ветераном своего дела, чтобы разобраться в коде. Также как Вам не нужна мудреная идея продукта. Но точно понадобятся настойчивость и время. Надеюсь, что данное руководство поможет Вам создать первый проект с минимальной затратой и первого, и второго.

В этой статье мы пошагово разберем процесс создания базовой библиотеки на Python. Не забудьте заменить в приведенном ниже коде my_package, my_file и т.п. нужными вам именами.

Шаг 1: Составьте план


Мы планируем создать простую библиотеку для использования в Python. Данная библиотека позволит пользователю легко конвертировать блокнот Jupyter в HTML-файл или Python-скрипт.
Первая итерация нашей биб


[Из песочницы] Отказываемся от платных RPA платформ и базируемся на OpenSource (OpenRPA)

Вводная


Ранее на Хабре очень подробно освещалась тема Автоматизации десктопных GUI приложений на Python. В то время меня очень сильно привлекла эта статья, потому что в ней раскрываются элементы, схожие с элементами создания роботов. А так как по роду своей профессиональной деятельности я занимаюсь роботизацией бизнес-процессов компании (RPA — область, в которой не было полнофункциональных OpenSource аналогов до недавнего времени), данная тема была очень актуальна для меня.

Читать дальше →


Как выбрать лучший инструмент автоматизации для вашей работы в Revit. Дизайнеры против программистов

Новые средства автоматизации выводят планирование на новый уровень развития.

Какой инструмент позволит нам сэкономить тысячи часов за счет автоматизации процессов BIM в Revit?


На данный момент у нас есть 4 варианта автоматизации Revit:



  • Dynamo (графическое программирование с открытым исходным кодом)
  • Rhino.Inside (бета-версия, с Кузнечиком это как Динамо)
  • PythonShell или pyRevit (Python с Revit API)
  • C # (C # с Revit API)


На графике я собрал свои мысли на эту тему:



Эта диаграмма может помочь вам объяснить менеджерам, в каких случаях, что нужно применять и какова ценность каждого из инструментов.


Как построить диаграмму Венна с 50 кругами? Визуализация множеств и история моего Python-проекта с открытым кодом

Всем привет, меня зовут Фёдор Индукаев, я работаю аналитиком в Яндекс.Маршрутизации. Сегодня хочу рассказать вам про задачу визуализации пересекающихся множеств и про пакет для Python с открытым кодом, созданный мной для её решения. В процессе мы узнаем, чем различаются диаграммы Венна и Эйлера, познакомимся с сервисом распределения заказов и по касательной заденем такую область науки, как биоинформатика. Двигаться будем от простого к более сложному. Поехали!



Читать дальше →


Сравниваем работу open source Python — библиотек для распознавания именованных сущностей

Введение


Мы в компании создаем сервис, который позволяет автоматически создавать, управлять и безопасно хранить лицензионные соглашения и прочие договоры между фрилансерами и их клиентами.

Для решения это задачи я опробовал десятки решений в области обработки естественного языка, в том числе решения с открытым кодом и хотел бы поделиться опытом работы с open source Python — библиотеками для распознавания именованных сущностей.

Распознавание именованных сущностей


Несколько слов о самой проблеме. Named Entity Recognition (NER) — это направление технологии обработки человеческого языка, программная реализация которой позволяет находить в речи и тексте опредмеченные категории слов и словосочетаний. Сначала это были географические наименования, имена людей, организаций, адреса, однако в настоящее время это понятие сильной расширилось и с помощью NER мы ищем в тексте относительные и абсолютные даты, числа, номера и т.д.
Выявление именов


Пробуждение спящего института: как мы убираем ходунки у Python в REAPER


Я уже больше недели брожу вокруг да около мыслей о написании этой статьи. Правда, основная мотивация сначала была в том, что мне последнее время не хватало контента и хотелось немного разбавить коронавирусную повестку. Однако, потом появились статьи про робо-комбайн, взлом архива с биткоинами и прочая годнота и я, было, решил, что не время еще пускать в ход недозрелый материал.


Однако, сегодня нежданно вырвался из локдауна ментейнер героя сегодняшнего обзора, и, буквально несколько часов назад в PyPi ушел reapy v0.6.0. Под катом — последний changelog, и мне особенно приятно, что в той или иной степени я поучаствовал в появлении каждой его строчки.


Итак: зачем нужен reapy, и что проиходит с Python в REAPER.

Читать дальше →


[Из песочницы] Ускоряем numpy, scikit и pandas в 100 раз с Rust и LLVM: интервью с разработчиком Weld

Привет, Хабр! Представляю вашему вниманию перевод статьи «Interview with Weld’s main contributor: accelerating numpy, scikit and pandas as much as 100x with Rust and LLVM».

Проработав несколько недель с data science инструментарием в Python и R, я начал задаваться вопросом, а нет ли какого промежуточного представления (Intermediate representation, IR) наподобие CUDA, которое можно использовать в разных языках. Должно же быть что-то получше, чем реимплементация и оптимизация одних и тех же методов в каждом языке. В дополнение к этому было бы неплохо иметь общую среду выполнения (common runtime), чтобы оптимизировать всю программу целиком, а не каждую функцию в отдельности.

После нескольких дней исследования и тестирования различных проектов я нашел Weld (можете ознакомиться с



[Перевод] Celery throttling — настраивам rate limit для очередей

​ В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.



So what's the problem?


​ Для начала пара слов о том, какую проблему я вообще пытаюсь решить. Дело в том, что 99.9% сервисов в интернете запрещают бесконтрольно закидывать их сотнями/тысячами запросов в секунду, угрожая дать в ответ какой-нибудь 403 или 500. Нет, ну правда, жалко им чтоле? Иногда таким сервисом может выступать даже своя собственная БД… Вобщем, доверять нынче нельзя никому, поэтому приходится себя к



Trio – асинхронное программирование для людей



В Python существует библиотека Trio – библиотека асинхронного программирования.
Знакомство с Trio в основном будет интересно тем, кто работает на Asyncio, потому что это хорошая альтернатива, позволяющая решать часть проблем, с которыми не может справиться Asyncio. В этом обзоре рассмотрим, что из себя представляет Trio и какие фичи она нам дает.
Читать дальше →


Введение в архитектурный фреймворк для анализа данных Lena

Привет, Хабр! Я расскажу об архитектурном фреймворке, который я разрабатываю.


Архитектура определяет наиболее общее устройство программы и взаимодействие её компонентов. Lena как фреймворк реализует конкретную архитектуру для анализа данных (подробнее о ней ниже) и предоставляет пользователю классы и функции, которые могут быть при этом полезны (с учётом данной архитектуры).


Lena написана на популярном языке Python и работает с версиями Python 2, 3 и PyPy. Она опубликована под свободной лицензией Apache (версия 2) здесь. В данный момент она ещё разрабатывается, однако описываемое в данном руководстве уже используется, тестировано (общее покрытие всего фреймворка около 90%) и вряд ли будет изменено. Lena возникла при анализе данных экспериментов в физике нейтрино и названа в честь великой сибирской реки.