Посты с тэгом random forest


[Перевод] Random Forest, метод главных компонент и оптимизация гиперпараметров: пример решения задачи классификации на Python

У специалистов по обработке и анализу данных есть множество средств для создания классификационных моделей. Один из самых популярных и надёжных методов разработки таких моделей заключается в использовании алгоритма «случайный лес» (Random Forest, RF). Для того чтобы попытаться улучшить показатели модели, построенной с использованием алгоритма RF, можно воспользоваться оптимизацией гиперпараметров модели (Hyperparameter Tuning, HT).



Кроме того, распространён подход, в соответствии с которым данные, перед их передачей в модель, обрабатывают с помощью метода главных компонент (



Практика анализа данных в прикладной психологии


1. Вступление


Показан процесс анализа информации в сфере прикладной психологии. Если быть более точным, то я поделюсь своим опытом поиска различий между двумя группами людей. Будет показан один из самых популярных сценариев решения подобной задачи, а также приведены примеры исходного кода на языках программирования R и Python. Важно понимать, что вся изложенная информация является моим личным субъективным мнением.

Читать дальше →


Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Привет всем, кто дожил до пятой темы нашего курса!


Курс собрал уже более 1000 участников, из них первые 3 домашних задания сделали 520, 450 и 360 человек соответственно. Около 200 участников пока идут с максимальным баллом. Отток намного ниже, чем в MOOC-ах, даже несмотря на большой объем наших статей.


Данное занятие мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию, и таким образом улучшим точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


Список статей серии