Посты с тэгом разработка под windows


Математические модели хаоса

Введение


На Habr уже обсуждалась теория хаоса в статьях [1,2,3]. В этих статьях рассмотрены следующие аспекты теории хаоса: обобщённая схема генератора Чуа; моделирование динамики системы Лоренца; программируемые логическими интегральными схемами аттракторы Лоренца, Ресслера, Рикитаке и Нозе-Гувера.

Однако, техники теории хаоса используются и для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех, что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий, до аритмических сердцебиений [4].

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов, процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но, если его изобразить как странный аттракт


[Перевод] Докеризация веб-служб на R и Python

Привет, Хабр! Контейнеризация — это подход к разработке программного обеспечения, при котором приложение или служба, их зависимости и конфигурация (абстрактные файлы манифеста развертывания) упаковываются вместе в образ контейнера. В этой статье рассмотрим создание docker-образа и его использование для запуска оболочки R, Python и много другого. Присоединяйтесь!

Читать дальше →



Построение орбит небесных тел средствами Python



Системы отсчёта для определения орбиты


Для нахождения траекторий относительных движений в классической механике используется предположение об абсолютности времени во всех системах отсчета (как инерциальных, так и неинерциальных).

Используя данное предположение, рассмотрим движение одной и той же точки в двух различных системах отсчета К и К', из которых вторая движется относительно первой с произвольной скоростью — радиус-вектор, описывающий положение точки начала системы координат К' относительно системы отсчета К).

Будем описывать движение точки в системе К' радиус-вектором , направленным из начала координат системы К' в текущее положение точки. Тогда движение рассматриваемой точки относительно


Численные методы решения систем нелинейных уравнений

Введение


Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через


Динамика вертикального полёта летательного аппарата легче воздуха

Введение



Определение скорости подъёма и спуска летательных аппаратов легче воздуха (ЛАЛВ) до настоящего времени является практически важной задачей, возникающей при проектировании таких аппаратов.

Большое количество публикаций посвящено ЛАЛВ, например, только на нашем ресурсе приведены две очень интересные статьи [1,2], касающиеся истории развития на примере конкретных конструкций дирижаблей и стратостатов. Однако очень мало расчётов динамики вертикального полёта таких устройств, позволяющих хотя бы ориентировочно определять скорости подъёма и спуска ЛАЛВ.

Последнее утверждение требует определённого пояснения, поскольку искушённый читатель хорошо помнит школьный курс физики, в котором решались задачи на высоту подъёма и другие параметры воздушных шаров, заполненных газами легче воздуха или самим подогреваемым во время полёта воздухом.

Все указанные задачи были основаны на равенстве двух сил: силы веса и выталкивающей силы. Газы считалис


Пространство состояний в задачах проектирования систем оптимального управления



Введение


Исследование системы управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа.

Состоянию системы соответствует точка в определённом евклидовом пространстве, а поведение системы во времени характеризуется траекторией, описываемой этой точкой.

При этом математический аппарат включает готовые решения по аналоговому и дискретному LQR и DLQR контролерам, фильтра Калмана, и всё это с применением матриц и векторов, что и позволяет записывать уравнения системы управления в обобщённом виде, получая дополнительную информацию при их решении.

Целью данной публикации является рассмотрение решения задач проектирования систем оптимального управления методом описания пространства состояний с использованием программных средств Python.


Использование библиотеки Python Control Systems Library для проектирования систем автоматического управления



Здравствуйте !!!

С появлением библиотеки Python Control Systems Library [1], решение основных задач проектирования систем автоматического управления (САУ) средствами Python значительно упростилось и теперь практически идентично решению таких задач в математическом пакете Matlab.

Однако, проектирование систем управления с применение указанной библиотеки имеют ряд существенных особенностей, которых нет в документации [1], поэтому особенностям использования Python Control Systems Librar и посвящена данная публикация.

Начнём с инсталляции библиотеки. В документации говориться о загрузке двух модулей slycot и control, на самом деле для нормальной работы нужна ещё библиотека numpy+mkl, остальные устанавливаются автоматически при загрузке control.

Указанные модули можно скачать с сайта [2]. В документации так же сказано, что для ин


Контроллер Arduino с датчиком температуры и Python интерфейсом для динамической идентификации объектов управления

Введение

Возможность получения действительной информации о состоянии реальных объектов в реальном масштабе времени позволяет обоснованно приступать к следующему этапу анализа и синтеза систем – математическому моделированию динамических характеристик объектов управления.

В данной публикации рассматривается доступный в реализации проект системы измерения технологического параметра – температуры, с дистанционной передачей сигнала в вычислительную среду для дальнейшей обработки измерительной информации.

В основу данного проекта положены аппаратные средства для прототипирования на базе платформы Arduino со множеством совместимых с ними модулей и свободных программных средств Python, образующих интегрированную среду разработки Arduino Software.

Читать дальше →


Использование обратного преобразования Лапласа для анализа динамических звеньев систем управления



Здравствуйте!

До настоящего времени в арсенале средств высокоуровневого языка программирования Python отсутствовали модули для численного преобразования передаточных функций элементов САУ из частотной области во временную.

Поскольку функции обратного преобразования Лапласа широко используются при анализе динамических систем контроля измерения и управления, использование Python для указанных целей было весьма затруднительно, поскольку приходилось использовать менее точное обратное Фурье преобразование [1].

Указанную проблему решает модуль mpmath библиотеки Python свободного распространения (под лицензией BSD), предназначенный для решения задач вещественной и комплексной арифметики с плавающей точкой и заданной точностью.

Работу над модулем ещё в 2007 году начал Fredrik Johansson [2], и, благодаря помощи многих участников проекта, в настоящее время


Математические модели релейно-импульсных регуляторов



Введение

Важнейшей задачей автоматического управления любыми технологическими процессами является разработка математического описания, расчет и анализ динамики автоматических систем регулирования (АСР).

Практика промышленного использования микропроцессорных регулирующих приборов (МРП) показала, что “идеальные алгоритмы” физически не реализуемы. Синтезированная на их основе АСР не отражает поведение реальной системы [1].

Отклонения алгоритмов от идеализированных при определенных условиях, например, для релейно-импульсных регуляторов, когда скорость исполнительного механизма соответствует реальной динамике объекта, поведение реальной системы с достаточной степенью точности соответствует результатам математической модели.

Релейно-импульсные регуляторы применяются в микропроцессорных регулирующих приборах, где наблюдается следующая тенденция. Например