Посты с тэгом разработка под windows


Windows 10 + Python = VS Code + WSL


Microsoft… Технологических локомотивов нашего времени. Ни для кого не секрет что они крутые, а также, что они поглощают все больше и больше… Всего. К счастью последнее время они только радуют меня своим потенциалом. А после выступления Satya Nadella, где он рассказал миру о том, что Windows больше не является основным продуктом компании, так как они положили курс на внедрение своих API…. Повсюду
Для разработчиков ПО они так же не скупятся. C#, Azure, Visual Studio… Но сейчас пойдет речь о Python, ведь для него местечко здесь тоже пригрели.

Кратко о WSL


С обновлением Windows появилась возможность использовать такую штуку, как WSL (Windows Subs


[Перевод] Linux-разработка в Windows с WSL и Visual Studio Code Remote

Работа с VS Code Remote и Windows Subsystem for Linux (WSL) дает возможность использовать полнофункциональную среду разработки Linux на ноутбуке или десктопе с предустановленной Windows. В этом материале рассмотрим то, как использовать эти инструменты для разработки приложений на Python в Linux.


Читать дальше →



[Из песочницы] Python + Pyside2 или просто «Калькулятор»

Привет, Хабр!

Меня зовут Саша. Я Junior разработчик. Работаю тестировщиком ПО. В основном я пишу тесты при помощи Python+Selenium, но Python стал настолько интересен, что мне захотелось углубиться в него и выучить как можно больше фреймворков! Я захотел написать десктопное приложение, аля простой «Калькулятор». Мой выбор пал на Pyside2. Я не претендую на идеальный код или урок. Просто есть желание поделиться опытом, если кто-то, как и я, хочет начать шарить в Python. Если кому-то помогу — результата я достиг.

Начнем!
Читать дальше →



Вейвлет-анализ.Часть 3

Введение


При проведении CWT анализа средствами библиотеки PyWavelets (бесплатное программное обеспечение с открытым исходным кодом, выпущенное по лицензии MIT) возникают проблемы с визуализацией результата. Предложенная разработчиками тестовая программа по визуализации приведена в следующем листинге:
Листинг
 import pywt
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(-1, 1, 200, endpoint=False)
sig  = np.cos(2 * np.pi * 7 * t) + np.real(np.exp(-7*(t-0.4)**2)*np.exp(1j*2*np.pi*2*(t-0.4)))
widths = np.arange(1, 31)
cwtmatr, freqs = pywt.cwt(sig, widths, 'cmor1-1.5')
plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
             vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())  # doctest: +SKIP
plt.show() # doctest: +SKIP

При работе с комплексными вейвлетами, например с 'cmor1-1.5', программа выд


[Перевод] Кто добавил Python в последнее обновление Windows?

Несколько дней назад команда Windows анонсировала майское обновление 2019 для Windows 10. В этом посте мы взглянем на то, что мы, команда Python, сделали для того, чтобы установка Python в Windows стала проще. В частности поговорим о Microsoft Store и о добавлении дефолтной команды “python.exe” для облегчения поиска (в коллаборации с Windows). Возможно вы уже слышали об этом в подкасте Python Bytes, на PyCon US, или в Twitter.




LQR оптимизация систем управления

Введение


На Habr были опубликованы несколько статей [1,2,3], прямо или косвенно касающиеся указанной темы. В связи с этим, нельзя не отметить публикацию [1] с названием “Математика на пальцах: линейно-квадратичный регулятор”, которая популярно поясняет принцип работы оптимального LQR контролера.

Мне захотелось продолжить указанную тему, рассмотрев практическое применения метода динамической оптимизации, но уже на конкретном примере средствами Python. Сначала пару слов о терминологии и методе динамической оптимизации.

Методы оптимизации делятся на статические и динамические. Объект управления находится в состоянии непрерывного движения под действием различных внешних и внутренних факторов. Следовательно, оценка результата управления дается за время управления Т, и это задача динамической оптимизации.

С помощью методов динамической оптимизации решаются задачи, связанные с распределением ограниченных ресурсов на протяжении некоторого промежутк


Математические модели хаоса

Введение


На Habr уже обсуждалась теория хаоса в статьях [1,2,3]. В этих статьях рассмотрены следующие аспекты теории хаоса: обобщённая схема генератора Чуа; моделирование динамики системы Лоренца; программируемые логическими интегральными схемами аттракторы Лоренца, Ресслера, Рикитаке и Нозе-Гувера.

Однако, техники теории хаоса используются и для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех, что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий, до аритмических сердцебиений [4].

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов, процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но, если его изобразить как странный аттракт


[Перевод] Докеризация веб-служб на R и Python

Привет, Хабр! Контейнеризация — это подход к разработке программного обеспечения, при котором приложение или служба, их зависимости и конфигурация (абстрактные файлы манифеста развертывания) упаковываются вместе в образ контейнера. В этой статье рассмотрим создание docker-образа и его использование для запуска оболочки R, Python и много другого. Присоединяйтесь!

Читать дальше →



Построение орбит небесных тел средствами Python



Системы отсчёта для определения орбиты


Для нахождения траекторий относительных движений в классической механике используется предположение об абсолютности времени во всех системах отсчета (как инерциальных, так и неинерциальных).

Используя данное предположение, рассмотрим движение одной и той же точки в двух различных системах отсчета К и К', из которых вторая движется относительно первой с произвольной скоростью — радиус-вектор, описывающий положение точки начала системы координат К' относительно системы отсчета К).

Будем описывать движение точки в системе К' радиус-вектором , направленным из начала координат системы К' в текущее положение точки. Тогда движение рассматриваемой точки относительно


Численные методы решения систем нелинейных уравнений

Введение


Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через