Посты с тэгом skillfactory


[Перевод] Анимации градиентного спуска и ландшафта потерь нейронных сетей на Python

Во время изучения различных алгоритмов машинного обучения я наткнулся на ландшафт потерь нейронных сетей с их горными территориями, хребтами и долинами. Эти ландшафты потерь сильно отличались от выпуклых и гладких ландшафтов потерь, с которыми я столкнулся при использовании линейной и логистической регрессий. Здесь мы создадим ландшафты потерь нейронных сетей и анимированного градиентного спуска с помощью датасета MNIST.


Рисунок 1 — Ландшафт потерь свёрточной нейронной сети с 56 слоями (VGG-56, источник)



[Перевод] Как быть билингвом в Data Science

В этой статье я хочу продемонстрировать R Markdown — удобную надстройку для программирования вашего проекта как на R, так и на Python, позволяющую программировать некоторые элементы вашего проекта на двух языках и управлять объектами, созданными на одном языке, с помощью другого языка. Это может быть полезно потому, что:

  1. Позволяет писать код на привычном языке, но при этом использовать функции, существующие только в другом языке.
  2. Позволяет напрямую сотрудничать с коллегой, который программирует на другом языке.
  3. Даёт возможность работать с двумя языками и со временем научиться свободно владеть ими.


Приятного чтения!


[Перевод] Визуализация пересечений и перекрытий с помощью Python

Изучение вариантов решения одной из самых сложных задач визуализации данных


Преобладающая задача в любом анализе данных — сравнение нескольких наборов чего-либо. Это могут быть списки IP-адресов для каждой целевой страницы вашего сайта, клиенты, которые купили определённые товары в вашем магазине, несколько ответов из опроса и многое другое.

В этой статье воспользуемся Python для изучения способов визуализации перекрытий и пересечений множеств, наших возможностей, а также их преимуществ и недостатков.


Диаграмма Венна
Приятного чтения!


[Перевод] Как прогнозировать результаты спортивных матчей с помощью проекта ML на Python Pandas, Keras, Flask, Docker и Heroku

Во время Чемпионата мира по регби в 2019 году я сделал небольшой научный проект Data Science, чтобы попытаться спрогнозировать результаты матчей, написав о нем здесь. Я развил проект до примера от начала до конца, чтобы продемонстрировать, как развернуть модель машинного обучения в виде интерактивного веб-приложения.

Приятного чтения



[Перевод] Машинное обучение: ансамбль смешивания на Python

Смешивание — это ансамблевый алгоритм машинного обучения. Это разговорное название для стекового обобщения (stacked generalization) [далее будем использовать термин «пакетирование» вместо принятого в научных работах термина «стекинг»] или ансамбля пакетирования, где вместо того чтобы обучать метамодель на прогнозах вне групп, сделанных базовой моделью, модель обучается на прогнозах, сделанных на независимом наборе данных.

Термин «смешивание» использовался для описания моделей пакетирования, которые объединили многие сотни моделей в конкуренции на соревновании по машинному обучению от Netflix с призом в $1 000 000, и как таковое смешивание остаётся популярным методом и названием для пакетирования в конкурсах машинного обучения, например на Kaggle. Специально к старту нового потока курса «



[Перевод] Как создать свою собственную библиотеку AutoML в Python с нуля

Библиотеки и сервисы AutoML вошли в мир машинного обучения. Для дата-сайентиста это очень полезные инструменты, но иногда они должны быть адаптированы к потребностям бизнес-контекста, в котором работает дата-сайентист. Вот почему вам нужно создать свою собственную библиотеку AutoML. В преддверии старта нового потока курса «Машинное обучение» мы делимся материалом, в котором описано, как это сделать на Python.


Давайте начнём



[Перевод] 57 отборных репозиториев для всех разработчиков Python

Специально к старту нового потока курса «Python для веб-разработки» представляем подборку из 57 репозиториев, которые будут полезны как начинающему, так и опытному разработчику: это репозитории с ответами на вопросы собеседований, репозитории с книгами, небольшие, но полезные консольные инструменты и проекты, которые вдохновят вас написать красивый, работающий и полезный код.


Приятного чтения!



[Перевод] Понимание деревьев решений в машинном обучении и их реализация с помощью Python

Совсем скоро, 20 ноября, у нас стартует новый поток «Математика и Machine Learning для Data Science», и в преддверии этого мы делимся с вами полезным переводом с подробным, иллюстрированным объяснением дерева решений, разъяснением энтропии дерева решений с формулами и простыми примерами, вводом понятия «информационный выигрыш», которое игнорируется большинством умозрительно-простых туториалов. Статья рассчитана на любящих математику новичков, которые хотят больше разобраться вработе дерева принятия решений. Для полной ясности взят совсем маленький набор данных. В конце статьи — ссылка на код на Github.




[Перевод] Развертывание интерактивных визуализаций данных в реальном времени на Flask и Bokeh



Сегодня, в преддверии старта нового потока курса «Python для веб-разработки», делимся с вами полезным переводом статьи о небольшой интерактивной визуализации, для исследований данных о фильмах. Автор использует не только Flask и Bokeh, но и задействуя бесплатную облачную платформу баз данных easybase.io. Все подробности и демонстрации вы найдёте под катом.
Приятного чтения!


[Перевод] Реализуем и сравниваем оптимизаторы моделей в глубоком обучении


Реализуем и сравниваем 4 популярных оптимизатора обучения нейронных сетей: оптимизатор импульса, среднеквадратичное распространение, мини-пакетный градиентный спуск и адаптивную оценку момента. Репозиторий, много кода на Python и его вывод, визуализации и формулы — всё это под катом.
Приятного чтения!