Посты с тэгом threading


[Перевод] 8 продвинутых возможностей модуля logging в Python, которые вы не должны пропустить

Понимайте свою программу без ущерба для производительности



Журналирование — это очень важная часть разработки ПО. Оно помогает разработчикам лучше понимать выполнение программы и судить о дефектах и непредвиденных сбоях. Журнальное сообщение может хранить информацию наподобие текущего статуса программы или того, в каком месте она выполняется. Если происходит ошибка, то разработчики могут быстро найти строку кода, которая вызвала проблему, и действовать с учетом этого.


Python предоставляет довольно мощный и гибкий встроенный модуль logging со множеством возможностей. В этой статье я хочу поделиться восемью продвинутыми возможностями, которые будут полезны при разработке ПО.

Читать дальше →


Web-разработка на Python глазами PHP-программиста


Введение


В статье хотелось бы поднять вопросы отличия использования Python для web-зазработки по сравнению с оной на PHP. Надеюсь, статья не приведет к холиварам, так как она вовсе не о том, какой язык лучше или хуже, а исключительно о технических особенностях Python.
Читать дальше →


Определение главного потока приложения

В многопоточной программе все потоки равны, но один всё же несколько выделяется. Это — главный поток.

Главным потоком называется тот, который создаётся при запуске процесса операционной системой. Потом программа может наплодить себе разных потоков на собственные нужды, но главный есть всегда.

Иногда нужно знать, код исполняется в главном потоке или нет. Например, работать с UNIX сигналами можно только из главного потока. Различные GUI библиотеки часто тоже хотят выполняться непременно в главном потоке и никаком другом.

Если мы пишем приложение, то всегда можно придумать тот или иной способ узнать главный поток. Например, при старте, когда других потоков ещё нет, узнать идентификатор потока через threading.get_ident() и запомнить его где-нибудь.

Когда создаём библиотеку такой способ не всегда подходит. А в самом питоне нет официального способа определить, главный поток это или нет.

Зато работают пара хаков.

Тест



Определение главного потока приложения

В многопоточной программе все потоки равны, но один всё же несколько выделяется. Это — главный поток.

Главным потоком называется тот, который создаётся при запуске процесса операционной системой. Потом программа может наплодить себе разных потоков на собственные нужды, но главный есть всегда.

Иногда нужно знать, код исполняется в главном потоке или нет. Например, работать с UNIX сигналами можно только из главного потока. Различные GUI библиотеки часто тоже хотят выполняться непременно в главном потоке и никаком другом.

Если мы пишем приложение, то всегда можно придумать тот или иной способ узнать главный поток. Например, при старте, когда других потоков ещё нет, узнать идентификатор потока через threading.get_ident() и запомнить его где-нибудь.

Когда создаём библиотеку такой способ не всегда подходит. А в самом питоне нет официального способа определить, главный поток это или нет.

Зато работают пара хаков.

Тест



Threading и KeyboardInterrupt.

Как организовать пул потоков? Допустим у меня есть 100 данных (пусть они находятся в каком-либо списке) и все их нужно переработать в 10 потоков. Стартуем 10 потоков, в каждый передаем по 1 данному, следим за потоками, как только один отработал, стартуем новый и так пока не кончатся данные… В общем, это не то, чтобы бред, но есть способ поудобней.

За всё время работы скрипта, стартует только 10 потоков, просто каждый из них, отработав со своим 1 данным, не дохнет, а берет из списка следующее 1 данное и делает с ним эту же работу:

# -*- coding: utf-8 -*-
import threading, Queue, time
import traceback

class Worker(threading.Thread):
    def __init__(self,queue):
        threading.Thread.__init__(self)
        self.__queue = queue

    def run(self):
        while True:

            try: item = self.__queue.get_nowait() # ждём данные
            except Queue.Empty: break # данные закончились, прекращаем работу

            try: self.work(item) # работа
         


Python / [Ссылка] Еще раз о GIL

Подробное и вдумчивое изложение того, как работает GIL, и чем отличается реализация, появившаяся в Python 3.2.