Посты с тэгом type annotations


[Из песочницы] Основные недостатки языка Python

Язык программирования Python славится своей простотой и лаконичностью. Немногословный и понятный синтаксис, похожий на псевдокод, а также сильная динамическая типизация способствуют быстрому и безболезненному обучению новичков.


Интерпретатор языка берёт на себя всю низкоуровневую работу, освобождая программиста от необходимости ручного управления памятью. Практическая невозможность получить segmentation fault, а также удобная система исключений, снабжённая понятными сообщениями, позволяют оперативно отлаживать программы. Ситуации, когда их падения из-за возникшей ошибки требуют глубокого дебаггинга, достаточно редки.


Непереполняемые целые числа и безопасность при работе с контейнерами стандартной библиотеки делают из Python хорошее средство предварительного прототипирования идей, а большое число высококачественных математических библиотек обуславливают лидерство этого языка в области машинного обучения, анализа данных и научных вычислений.



Авто-дополнение кода и проверка типов для boto3


Картинка предотавлена автором boto3-type-annotations, Allie Fitter


Сейчас мало кто пишет большие проекты на Python без аннотации типов. Это и просто, и позволяет отловить кучу ошибок еще на этапе написания кода, да и работает очень шустро. Но стоит добавить в зависимости boto3, и mypy начинает пестрить сообщениями о том, что аннотаций типов для boto3 не существует в природе.


Не страшно, существует же официальный генератор аннотаций для boto3 botostubs. Только он официально не выпускался, не обновляется и с mypy не работает.


Есть и замечательный boto3-type-annotations



История одного эксперимента с Cython и C++ vector

Одним тёплым холодным зимним вечером, хотелось согреться в офисе и проверить теорию одного коллеги, что C++ vector мог бы быстрее справиться с задачей, чем CPython list.
В компании мы разрабатываем продукты на базе Django и случилось так, что нужно было обработать один большой массив словарей. Коллега предположил, что реализация на C++ была бы гораздо быстрее, а меня не покидало чувство, что Гвидо и сообщество наверное немного круче нас в Си и возможно уже решили и обошли все подводные камни, реализовав всё гораздо быстрее.
Для проверки теории, я решил написать небольшой тестовый файл, в котором решил прогнать в цикле вставку 1М словарей одинакового содержания в массив и в vector 100 раз подряд.
Результаты хоть и были ожидаемые, но так же и внезапные.

Что же из этого вышло?


Введение в аннотации типов Python

Введение



Автор иллюстрации — Magdalena Tomczyk


Python — язык с динамической типизацией и позволяет нам довольно вольно оперировать переменными разных типов. Однако при написании кода мы так или иначе предполагаем переменные каких типов будут использоваться (это может быть вызвано ограничением алгоритма или бизнес логики). И для корректной работы программы нам важно как можно раньше найти ошибки, связанные с передачей данных неверного типа.


Сохраняя идею динамической утиной типизации в современных версиях Python (3.6+) поддерживает аннотации типов переменных, полей класса, аргументов и возвращаемых значений функций: